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Problem Statement:

dPersonalized PageRank Model
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Random surfer to neighbors  Jump to seed nodes The stable probability can be

with probability (1-a) with probability « used to measure the similarity
w.r.t. the seed nodes

dProblem

» Input: Given a graph G, a set of seed nodes P, and teleport
probability a.

» Output: Find Personalized PageRank Vector(PPV) r, which is
computed as

ro= (1—a)A'rp + a up,

where
« A" is the normalized adjacency matrix,
* up IS the user preference vector.

d Challenge:

» Exactness. Most existing methods focus on approximate PPV
computation, exact PPV is hard to compute.

» Parallel. Itis hard to design scalable distributed algorithm to
compute PPV that works in iteration.

» Costs. It requires high time, space and network costs for
distributed graph computation.

Background:

0 From PPV to random tours
» PPV scores can be computed by random tours

“ Example:
there are 3 random tours from u; to us,.

tl: u; 2 Uy — Us

ty: Uy = Uy = Ug = Ug

t3:ul_)U4_)uS_)u2_)U3

The PPV score can be computed by adding up the weight of all possible
random tours.
ry, (uz) = P(t1) + P(t) + P(t3)

The weight of a tour t
L(t) 1

P(t) = a(l - o) 1_[ |Out(w;)|
i=1 '

Random Tour Decomposition
If we select some nodes to be hub nodes
. The random tours can be decomposed by these hub nodes.
. Result in two types of tours
= Partial vector: tours passing through no hub nodes

pty,, = P(t)) + P(t;) = P(uy = uy) + P(ug = uy > us)

= Skeleton vector: tours stop at a hub node

sky, = P(t3) + P(t4) + P(ts5) + P(ts)
= P(uy > uy) + P(uy » up » uz) + P(uy > uy > ug > u3)
+ P(uy = uy = us > us)

All possible tours can be constructed by partial
vectors and skeleton vectors.

» Example:
Consider atour u; = u, = u; = ug

In skeleton vector of u; In partial vector of u,

Approaches:

dGraph Partition Based Algorithm

If we choose the hub nodes that can separate the
graph, the size of partial vector can be bounded
inside a subgraph.
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We partition the graph
to disjoint components
and distribute each
subgraph on each
machine to compute
PPV.

grdinator

dHierarchical Graph Partition Based Algorithm

The partial vector computation in a subgraph is
to compute a “local” PPV. We can further
partition the subgraph recursively.
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Experimental Results:

] Baselines:

» Approximate : FastPPV [Fanwei Zhu, PVLDB 2013]

» Exact : Power Iteration

» Graph Processing Systems: Pregel+ [Da Yan, VLDB 2014], Blogel [Da Yan,
VLDB 2014]
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