NANYANG
TECHNOLOGICAL UNIVERSITY

Distributed Algorithms on Exact Personalized PageRank

Tao Guo, Xin Cao , Gao Cong, Jiaheng Lu, Xuemin Lin

Problem Statement:

Random surfer to neighbors with probability ($1-\alpha$)

Jump to seed nodes with probability α

The stable probability can be used to measure the similarity w.r.t. the seed nodes

-Problem

$>$ Input: Given a graph G, a set of seed nodes P, and teleport probability α.
$>$ Output: Find Personalized PageRank Vector(PPV) \boldsymbol{r}_{P} which is computed as

$$
\boldsymbol{r}_{P}=(1-\alpha) A^{T} \boldsymbol{r}_{P}+\alpha \boldsymbol{u}_{P}
$$

where

- A^{T} is the normalized adjacency matrix,
- \boldsymbol{u}_{P} is the user preference vector.

\square Challenge:

> Exactness. Most existing methods focus on approximate PPV computation, exact PPV is hard to compute.
$>$ Parallel. It is hard to design scalable distributed algorithm to compute PPV that works in iteration.
$>$ Costs. It requires high time, space and network costs for distributed graph computation.

Background:

\square From PPV to random tours
> PPV scores can be computed by random tours

* Example:
there are 3 random tours from u_{1} to u_{3} :

> The PPV score can be computed by adding up the weight of all possible random tours.

- Random Tour Decomposition
> If we select some nodes to be hub nodes

1. The random tours can be decomposed by these hub nodes
2. Result in two types of tours

$$
\begin{aligned}
& \text { - Partial vector: tours passing through no hub nodes } \\
& p t_{u_{1}}=P\left(t_{1}\right)+P\left(t_{2}\right)=P\left(u_{1} \rightarrow u_{4}\right)+P\left(u_{1} \rightarrow u_{4} \rightarrow u_{5}\right) \\
& \text { - Skeleton vector: tours stop at a hub node }
\end{aligned}
$$

$s k_{u_{1}}=P\left(t_{3}\right)+P\left(t_{4}\right)+P\left(t_{5}\right)+P\left(t_{6}\right)$
$=P\left(u_{1} \rightarrow u_{2}\right)+P\left(u_{1} \rightarrow u_{2} \rightarrow u_{3}\right)+P\left(u_{1} \rightarrow u_{2} \rightarrow u_{5} \rightarrow u_{3}\right)$ $+P\left(u_{1} \rightarrow u_{4} \rightarrow u_{5} \rightarrow u_{3}\right)$

All possible tours can be constructed by partial vectors and skeleton vectors.

- Example:

Approaches:

-Graph Partition Based Algorithm

If we choose the hub nodes that can separate the graph, the size of partial vector can be bounded inside a subgraph.

Can not be bounded X

We partition the graph to disjoint components and distribute each subgraph on each machine to compute PPV.

-Hierarchical Graph Partition Based Algorithm
The partial vector computation in a subgraph is to compute a "local" PPV. We can further partition the subgraph recursively.

Experimental Results:
\square Baselines:
> Approximate : FastPPV [Fanwei Zhu, PVLDB 2013]
> Exact: Power Iteration
> Graph Processing Systems: Pregel+ [Da Yan, VLDB 2014], Blogel [Da Yan, VLDB 2014]

(a) Web
(b) Youtube

(a) Web

(b) Youtube

