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ABSTRACT
As an important type of spatial keyword query, the m-closest key-
words (mCK) query finds a group of objects such that they cover all
query keywords and have the smallest diameter, which is defined as
the largest distance between any pair of objects in the group. The
query is useful in many applications such as detecting locations
of web resources. However, the existing work does not study the
intractability of this problem and only provides exact algorithms,
which are computationally expensive.

In this paper, we prove that the problem of answering mCK
queries is NP-hard. We first devise a greedy algorithm that has
an approximation ratio of 2. Then, we observe that an mCK query
can be approximately answered by finding the circle with the small-
est diameter that encloses a group of objects together covering all
query keywords. We prove that the group enclosed in the circle can
answer the mCK query with an approximation ratio of 2√

3
. Based

on this, we develop an algorithm for finding such a circle exactly,
which has a high time complexity. To improve efficiency, we pro-
pose another two algorithms that find such a circle approximately,
with a ratio of ( 2√

3
+ε). Finally, we propose an exact algorithm that

utilizes the group found by the ( 2√
3

+ ε)-approximation algorithm
to obtain the optimal group. We conduct extensive experiments us-
ing real-life datasets. The experimental results offer insights into
both efficiency and accuracy of the proposed approximation algo-
rithms, and the results also demonstrate that our exact algorithm
outperforms the best known algorithm by an order of magnitude.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Spatial
databases and GIS
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1. INTRODUCTION
With the proliferation of GPS-equipped mobile devices, mas-

sive amounts of geo-textual objects are becoming available on the
web that each possess both a geographical location and a textual
description. For example, such geo-textual objects include points
of interest (POIs) associated with texts, such as tourist attractions,
hotels, restaurants, businesses, entertainment services, etc. Other
example geo-textual objects include geo-tagged micro-blogs (e.g.,
Tweets), photos with both tags and geo-locations in social photo
sharing websites (e.g., Flickr), and check-in information on places
in location-based social networks (e.g., FourSquare).

The availability of substantial amount of geo-textual objects gives
prominence to the spatial keyword queries that target these objects,
which have been studied extensively in recent years [3, 5, 7, 9, 20,
21, 23]. Typically, a spatial keyword query finds the objects that
best match the arguments in the query exploiting both locations
and textual descriptions. Such queries are widely used in many ser-
vices and applications, such as online Map services, travel itinerary
planning, etc.

As an important type of the spatial keyword query, them-closest
keywords (mCK) query [21,22] is defined for finding a set of clos-
est keywords in the geo-textual object database. Specifically, let O
be a set of geo-textual objects, and each object o ∈ O has a loca-
tion denoted by o.λ and a textual description o.ψ. The mCK query
q contains m keywords, and it finds a group of objects G such that
they cover all the query keywords (i.e., q ⊆

⋃
o∈G o.ψ) and such

that the diameter of this group, denoted by δ(G), is minimized. The
diameter of a group is defined as the maximum distance between
any pair of objects in the group.

hotel

shop

restaurant

shrine

mCK Result Kyoto Area

Figure 1: Example of the mCK query
The mCK query has many applications as shown in the propos-

als [21, 22]. For example, it can be used in detecting geographic
locations of web resources such as documents or photos. Given a
document or a photo with some tags, we can issue an mCK query
using these tags. After a group of objects covering all tags that have
the smallest diameter is found, the area where these objects locate
is very likely to be the location of the document or the photo. It
has been shown [21, 22] that this approach can address the chal-
lenge faced by the traditional location detection techniques when
the tags of documents or photos do not contain gazetteer terms.
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The mCK query also has potential applications for location-based
service providers [22]. One example application is “fans of Ap-
ple products can submit ‘Apple store subway’ to locate a retailer
store near the subway for convenient purchase of the products in
New York [22].” As another example, consider a tourist who is
planning for a trip to Kyoto. She wishes to explore an area where
the following attractions are within walking distance (i.e., close to
one another): shrine, shop, restaurant, and hotel. That is, she
is seeking a location to stay and do sightseeing and shopping on
foot. This can be formulated as an mCK query. As shown in Fig-
ure 1, we can perform search on objects within the area of Kyoto,
and the group enclosed in the circle is returned to meet the tourist’s
requirements.

Exact algorithms are proposed in the studies [21,22] that run ex-
ponentially with the number of objects relevant to the query, and
thus they are computationally prohibitive when the number of rel-
evant objects is large. For example, in our experiments, the best
known algorithm [22] took almost 1 hour to answer a query con-
taining 8 keywords on a dataset with 1 million objects. Moreover,
the hardness of the problem is still unknown.

In this paper, we establish that the problem of exactly answer-
ing the mCK query is NP-hard, which can be proven by a reduc-
tion from the 3-SAT problem. The intractability result motivates us
to design approximation algorithms for efficiently processing the
mCK query. We first develop a greedy approach that has an ap-
proximation ratio of 2. We call this algorithm the Greedy Keywords
Group algorithm, denoted by GKG . Utilizing the result returned by
GKG , we propose three non-trivial approximation algorithms that
all have better performance guarantee than GKG . Based on one of
them, we further develop an efficient exact algorithm.

The three approximation algorithms answer the mCK query by
finding the circle with the smallest diameter that encloses a group of
objects together covering all query keywords. We call such a circle
the “smallest keywords enclosing circle,” and given a query q, we
denote the circle by SKECq . We prove that the group in SKECq
can answer the mCK query with an approximation ratio of 2√

3
.

Although finding SKECq is solvable in polynomial-time, it is still
an open problem to find SKECq efficiently, which is challenging
because we know neither its radius nor its center.

We first develop an approach to finding SKECq exactly. We de-
note the set of objects that contain at least one query keyword by
O′. This algorithm is based on a lemma we establish: there must
exist either three or two objects in O′ on the boundary of SKECq
and they determine SKECq . Unfortunately, this method has a high
time complexity (|O′|4 in the worst case). We call this method the
Smallest Keywords Enclosing Circle (denoted by SKEC , with a bit
abuse of notation). This method is impractical when |O′| is large.

For better efficiency, we propose to find SKECq approximately.
First, we develop an algorithm that performs search on each object
o inO′ one by one. We call this method the Approximate Smallest
Keywords Enclosing Circle (denoted by SKECa) algorithm. We
prove that the group enclosed in the circle found by SKECa can
answer the mCK query with an approximation ratio of ( 2√

3
+ ε)

(ε is an arbitrarily small positive value). To further improve effi-
ciency, we devise techniques to perform the search on all objects
in O′ together, instead of on each of them separately. This algo-
rithm finds the same circle as found by SKECa . We denote this
enhanced algorithm by SKECa+ . Both algorithms have better time
complexity than that of SKEC .

Finally, based on SKECa+ , we devise an exact algorithm for
the mCK query. Since answering mCK queries is NP-hard, it is
challenging to devise an efficient exact algorithm—an exhaustive
search on the object space cannot be avoided. We prove that the

diameter of the circle that encloses the optimal group cannot ex-
ceed 2√

3
times the diameter of the group found in SKECa+ . Thus,

we do an exhaustive search around each object o in O′, consider-
ing only objects in O′ whose distances to o are smaller than 2√

3

times the diameter of group G returned by SKECa+ . We denote
this method by EXACT . The group G found by SKECa+ is able to
greatly reduce the search space of EXACT .

In summary, the contributions of this paper are twofold. First,
we prove that the problem of answering mCK queries is NP-hard.
We observe and prove that an mCK query q can be answered by
SKECq approximately with a performance guarantee. Based on
this, we present novel approximation algorithms, SKEC , SKECa ,
and SKECa+ , all with provable performance bounds for answer-
ing the mCK query. We also design an exact approach based on
SKECa+ with the worst case time complexityO(|O′|n|q|−1), where
n is the number of objects in a region around an object, which can
be bounded by the result of SKECa+ , and in general n � O′.
Its complexity is better than that of the best known algorithm [22],
which is O(|O′||q|). Second, we conduct extensive experiments
on real-life datasets. The experimental results demonstrate that the
proposed approximation algorithms offer scalability and excellent
efficiency and accuracy and that the exact algorithm outperforms
the best known algorithm for answering mCK [22] by orders of
magnitude.

2. PROBLEM AND BACKGROUND
2.1 Problem Statement

Let O be a database consisting of a set of geo-textual objects.
Each object o ∈ O is associated with a location o.λ and a set of
keywords o.ψ describing the object (e.g., the menu of restaurants).
Definition 1: Diameter of a group: Given a group of objects
G, its diameter is defined as the maximum Euclidean distance be-
tween any pair of objects in G, denoted by δ(G). That is, δ(G) =
maxoi,oj∈G Dist(oi, oj), where Dist(oi, oj) computes the Euclidean
distance between oi and oj .

Definition 2: Problem definition [21,22]: Anm-closest keywords
(mCK) query q contains m keywords {tq1 , tq2 , ..., tqm}, and it
finds a group of objects G ⊆ O, each containing at least one query
keyword, such that ∪o∈Go.ψ ⊇ q and such that δ(G) is minimized.
Definition 3: Feasible group: Given an mCK query q, if a group
of objects can cover all keywords in q, we call such a group a “fea-
sible group” or a “feasible solution”.

We establish the hardness of answering the mCK query by the
following theorem.
Theorem 1: The problem of answering mCK queries is NP-hard.

PROOF. See Appendix A

2.2 Existing Solutions for mCK Queries
bR*-tree Based Method: In the work [21], Zhang et al. pro-
pose a hybrid index structure that combines the R*-tree and bitmap,
named bR*-tree. Each R*-tree node is augmented with a bitmap in-
dicating the keywords contained in the objects rooted at this node.
Based on the bR*-tree, an exact method is proposed to answer the
mCK query. The algorithm adopts an exhaustive search enhanced
with several pruning strategies. The search starts from the root
node, and is performed in a top-down manner. In each level of
the tree, all the candidate combinations of nodes (each combina-
tion can cover all query keywords) are generated. For each such
combination of nodes, all combinations of their child nodes that
cover all query keywords are generated. This process is repeated
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until the leaf node level is reached, and then all possible groups are
enumerated and the best one is returned as the result.
Virtual bR*-tree Based Method: In the subsequent work [22],
an improved version of the bR*-tree called virtual bR*-tree is pro-
posed. During query processing, the relevant objects and R*-tree
nodes are read from the inverted file, and a virtual bR*-tree is
built using these relevant objects and nodes in a bottom-up way.
The query is then processed using the algorithm proposed in the
work [21] based on the virtual bR*-tree. Compared to the original
bR*-tree, the size of the tree is significantly reduced. The experi-
mental results show that this solution is much more efficient than
that proposed in the earlier work [21]. Hence, we use the virtual
bR*-tree based method as the baseline, denoted by VirbR .
Spatial group keyword query: Cao et al. [2] study the spatial
group keyword (SGK) query. Such a query Q has both a location
Q.λ and a set of query keywords Q.ψ. Given a database of geo-
textual objectsO, it retrieves a set of objectsG, such that ∪o∈Go.ψ
⊇ Q.ψ, and the cost of G w.r.t. Q is minimized. The cost func-
tion takes into account both the distance of the group to the query
and the inter-object distance. That is, the returned group is close to
the query location, and the group also has a small diameter. When
considering only the diameter of the group and ignoring the query
location, such a query is equivalent to themCK query. The pruning
methods using location Q.λ become invalid in the algorithm pro-
posed for the SGK query, which is reduced to the bR*-tree based
algorithm [21]. Thus it is not compared in our experiments.

Long et al. [16] propose algorithms for processing the SGK query,
but the algorithms cannot handle the case when considering only
the inter-object distance, and thus they cannot be used to answer the
mCK query. They also studied a variant of the SGK query, where
the cost function of a group G is defined as maxo1,o2∈{G∪Q}(Dist
(o1, o2)), called Dia-CoSKQ. That is, the query location is also
considered when computing the diameter of the group. They pro-
pose both exact and approximation algorithms for this query. We
adapt the two algorithms to answer the mCK query. Give an mCK
query q, we select the most infrequent keyword tinf , and on each
object oi containing tinf , we issue a Dia-CoSKQ query with oi as
the query location and q \ oi.ψ as the query keywords, and we in-
voke the algorithm (either exact or approximate) [16] to answer the
query. After all objects containing tinf are processed, the group
with the best cost is used as the result of the mCK query. The rea-
son for choosing the most infrequent keyword tinf is to minimize
the number of times for issuing the Dia-CoSKQ query. The two al-
gorithms are denoted by ASGK (adapted SGK exact) and ASGKa
(adapted SGK approximation), respectively. We compare ASGK
and ASGKa with our proposed algorithms in the experiments, and
they both have poor performance. The result shows that the adap-
tation is not suitable for processing the mCK query.

3. ALGORITHM GKG
We develop a 2-approximation algorithm as a baseline for an-

swering the mCK query. We call it the Greedy Keyword Group
(GKG ) algorithm. The algorithm is described as follows. Given
a query q = {tq1 , tq2 , ..., tqm}, we first find the most infrequent
keyword tinf among the keywords in q based on their frequencies
in dataset O. Then, around each object o containing tinf , for each
keyword t ∈ q \ o.ψ we find the nearest object containing t. These
objects and o form a feasible group, and we denote this group by
Go. After all the objects containing tinf are processed, we select
the group that has the smallest diameter to answer the query ap-
proximately. We find the most infrequent keyword tinf because
this can reduce the number of subsequent operations for finding the
nearest object. In the algorithm, we utilize the virtual bR*-tree in-

dexing structure [22] to find the nearest object containing a term t.
The reason for using the virtual bR*-tree is that we use the same
index for all methods as the VirbR algorithm [22] for a fair com-
parison of different algorithms. Alternatively, we can also use other
geo-textual indexes (such as IR-tree [7]). The algorithm details are
presented in Appendix B.

Approximation ratio and Complexity. We proceed to prove that
GKG is within an approximation factor of 2. We denote the group
returned by GKG by Ggkg , and denote the optimal group for the
query by Gopt.
Theorem 2: δ(Ggkg) ≤ 2 · δ(Gopt).

PROOF. Let oi to be the object containing tinf in Gopt, and we
denote the feasible group containing oi by Goi . We know that
δ(Ggkg) ≤ δ(Goi) according to the algorithm. We denote by of
the object that is the furthest to oi in Goi .

On one hand, because all objects in Goi fall in the circle with oi
as center and Dist(oi, of ) as radius, δ(Goi) must be no larger than
the diameter of the circle, i.e., 2Dist(oi, of ). On the other hand,
of must cover a keyword tf that is not covered by other objects
in Goi , and it is the nearest object to oi containing tf . Hence, in
Gopt, the object containing tf must be no closer to oi than of . We
thus know that δ(Gopt) ≥ Dist(oi, of ).

Hence, δ(Ggkg) ≤ δ(Goi) ≤ 2Dist(oi, of ) ≤ 2δ(Gopt).

In GKG , each object containing tinf is considered to be in the
candidate group, and we denote the set of such objects as Otinf .
For each object o ∈ Otinf , we find at most m − 1 other objects
together with o to form a feasible group. If we assume finding the
nearest object containing a given keyword costs time d, the time
complexity of GKG is O(m|Otinf |d), where d depends on the in-
dex structure in place.

4. SKEC-BASED ALGORITHMS
To achieve better accuracy, we propose several novel algorithms

with much smaller approximation ratios, which answer the mCK
query by finding a circle with the smallest diameter that encloses a
group of objects covering all query keywords. We call such a circle
the “smallest keywords enclosing circle” w.r.t. the given query q,
denoted by SKECq . We prove that the group enclosed in the circle
SKECq can answer q with a ratio of 2√

3
, which is very close to 1.

However, finding SKECq efficiently remains an open problem,
which is challenging because neither its radius nor its center is
known, although it is solvable in polynomial-time. We first de-
velop an algorithm for finding SKECq exactly and it can answer
mCK query q with a ratio of 2√

3
. We denote this method by SKEC .

Algorithm SKEC has a high time complexity. To achieve better ef-
ficiency, we propose to find SKECq approximately, and design two
algorithms SKECa and SKECa+ , both of which are able to answer
the mCK query with a ratio of ( 2√

3
+ ε), where ε is an arbitrarily

small positive value.
We next introduce several definitions and theorems in Section 4.1,

which lay the foundation of our algorithms. We detail SKEC ,
SKECa , and SKECa+ in Sections 4.2, 4.3, and 4.4, respectively.

4.1 Minimum Covering Circle and Keywords
Enclosing Circle

Definition 4: Minimum Covering Circle. Given a set of geo-
textual objects G, the Minimum Covering Circle of G is the circle
that encloses them with the smallest diameter, denoted by MCCG.

The problem of finding the minimum covering circle for a given
set of objects has been well studied [10,11,17]. Note that the diam-
eter of the circle that encloses a group is different from the diameter
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Figure 2: Example of two diameters

of the group. We denote the diameter of a circle C by ø(C), and we
denote the diameter of a groupG by δ(G). Given a group of objects
G, we show that δ(G) 6= ø(MCCG) in Figure 2. Both groups G1

and G2 cover keywords {t1, t2, t3}. In group G1, the two diame-
ters are the same. However, in group G2, the diameter of G2 and
the diameter of the minimum covering circle of G2 are different.

Although the diameter of the circle that encloses a group and
the diameter of the group can be different, we have the following
theorems to show their relationship.
Theorem 3: [11] Given a set of objects G, its smallest object en-
closing circle can be determined by at most three points inGwhich
lie on the boundary of the circle. If it is determined by only two
points, then the line segment connecting those two points must be
a diameter of the circle. If it is determined by three points, then the
triangle consisting of those three points is not obtuse.
Theorem 4: Given a set of objects G and its minimum covering
circle MCCG, we have

√
3
2

ø(MCCG) ≤ δ(G) ≤ ø(MCCG).

PROOF. See Appendix C

Definition 5: Keywords Enclosing Circle. Given a database of
geo-textual objects O and a set of keywords ψ, the Keywords En-
closing Circle w.r.t. ψ (denoted by KECψ) is a circle that encloses a
group of objects covering all the given keywords in ψ. We call the
one with the smallest diameter the Smallest Keywords Enclosing
Circle (denoted by SKECψ)

o2:t1,t2

o1:t4

o3:t3

o4:t1

o5:t2,t3

o6:t2

KECΨ (KECΨ
o1)

SKECΨ (SKECΨ
o1)

Figure 3: Examples of enclosing circles w.r.t. {t1, t2, t3, t4}.
Example 1: As shown in Figure 3, given a set of keywords q =
{t1, t2, t3, t4}, the larger circle is a keyword enclosing circle, and
the smaller circle with dashed line is the smallest keyword enclos-
ing circle w.r.t. q.

From Figure 2, it can also be observed that given an mCK query
q, the group enclosed by SKECq is not necessary the optimal group
of q, i.e., Gopt. Consider the objects as shown in Figure 2, given
a query q = {t1, t2, t3}, G2 is the optimal group rather than G1

because δ(G2) < δ(G1). However, the minimum covering circle
of G1 is SKECq , because ø(MCCG2) > ø(MCCG1).

Fortunately, we can establish the relationship between the diam-
eter of Gopt and the diameter of the group enclosed in SKECq ,
denoted by Gskec (i.e., SKECq is MCCGskec ), as follows.
Theorem 5: δ(Gskec) ≤ 2√

3
δ(Gopt).

PROOF. According to Theorem 4, ø(MCCGopt) ≤ 2√
3
δ(Gopt),

and δ(Gskec) ≤ ø(SKECq). Since SKECq has the smallest diam-
eter, we can obtain δ(Gskec) ≤ ø(SKECq) ≤ ø(MCCGopt) ≤
2√
3
δ(Gopt).

Theorem 5 shows that if we can find the smallest keywords en-
closing circle SKECq for a given mCK query q, the group of ob-
jects Gskec enclosed in SKECq can approximately answer query
q with a ratio of 2/

√
3 (≈ 1.1547). This lays the foundation of

our proposed algorithms that find SKECq to approximately answer
query q, to be presented in the next three subsections.

4.2 Algorithm SKEC
The SKEC algorithm finds the smallest keywords enclosing cir-

cle SKECq exactly for a given query q. The algorithm has a high
time complexity (to be analyzed later). It is based on the following
corollary, which follows Theorem 3 and the definition of SKECq .
Corollary 1: There must exist either three or two objects on the
boundary of SKECq , which determine the circle SKECq . If two
objects determine SKECq , the line segment connecting them is the
diameter of SKECq .

We denote byO′ the set of objects that contain at least one query
keyword. According to the corollary, we can check every combi-
nation of two and three objects in O′ to find whether the circle
determined by the combination encloses a group covering all query
keywords and has the smallest diameter. The circle found finally
must be SKECq . We introduce several pruning strategies to reduce
the number of checking in SKEC . Before presenting the details of
SKEC , we introduce the following definition.
Definition 6: Object-across Keywords Enclosing Circle. Given
a set of keywords q and an object o, we call a keywords enclosing
circle passing through o the o-across Keywords Enclosing Circle
(denoted by KECoq). The o-across keywords enclosing circle with
the smallest diameter is called the o-across Smallest Keywords En-
closing Circle (denoted by SKECoq).
Example 2: As shown in Figure 3, the larger circle is an o1-across
keywords enclosing circle, and the smaller circle is the o1-across
smallest keywords enclosing circle w.r.t. q = {t1, t2, t3, t4}.

Given a query q, there must exist an object containing at least one
query keyword on the boundary of SKECq . Hence, if we find the
object-across smallest keywords enclosing circle (SKECoq) on each
object o inO′ (these objects are obtained using the virtual bR*-tree
index), the one with the smallest diameter must be SKECq . That is,
SKECq = min

o∈O′
SKECoq .

The algorithm is shown in Algorithm 1. We first obtain a group
Ggkg using the GKG algorithm, and the diameter of its minimum
covering circle MCCGgkg serves as the initial upper bound of the
diameter of SKECq . We denote the current best checked circle by
Ccur , and Ccur is initialized as MCCGgkg (lines 1–2). For each
object o inO′, if it covers all query keywords, we return this object
(line 5). Otherwise, we find the smallest o-across keyword enclos-
ing circle, and update Ccur if it has a smaller diameter (line 6).
Finally, we return the objects in Ccur to answer q (lines 7–8).

Procedure findOSKEC(). We next present how to find SKECoq
around each object o in O′. For finding SKECoq , the search space
comprises only objects whose distance to o is smaller than ø(Ccur).
This is because for any object of with Dist(o, of ) ≥ ø(Ccur), the
circle passing by of and o must have a diameter no smaller than
Dist(o, of ), and thus is worse than Ccur . If these objects together
cannot cover all query keywords, o does not need to be processed.

Recall that SKECq is determined by either three or two objects
inO′. We aim at searching whether the circle determined by object
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Algorithm 1: SKEC (q)
1 Ggkg ← GKG (q) ; // invoke GKG
2 Ccur ← MCCGgkg

;
3 O′ ← objects containing at least one keyword in q;
4 foreach object o ∈ O′ do
5 if o.ψ = q then return {o} ;
6 Ccur ←findOSKEC(o, Ccur );
7 Gskec ← objects in Ccur ;
8 return Gskec;

o together with a second object oj , and the circle determined by o,
oj and a third object om is SKECq . For each object oj in the search
space of o, we first consider the case when SKECq is determined by
two objects. We check all the objects in the circle determined by the
pair, and update Ccur if the circle covers all query keywords. We
next consider the case when SKECq is determined by three objects.
For each object om in the search space of o, we check if the circle
determined by o, oj , and om can cover all query keywords and has
the smallest diameter among all checked circles. The diameter of
the circle can be computed using the laws of sins and cosines.

The second object oj is processed in ascending order of their
distances to o. This assures that when we reach an object oj with
distance to o larger than ø(Ccur), we can terminate the search
around o immediately, because a circle passing by any further ob-
ject and o must have a diameter larger than ø(Ccur). After o and
oj are fixed, an object om is considered as the third object only
if Dist(om, o) < Dist(oj , o) and Dist(om, oj) < ø(Ccur). The
first constraint is because further objects will be processed in sub-
sequent steps, where they are used as the second object. The second
constraint is because further objects, together with o and oj , cannot
determine a better circle than Ccur .

After all objects inO′ are processed, it is assured that all object-
across keywords enclosing circles are found. We use the best one
to answer the given mCK query. The pseudo code is given in Pro-
cedure findOSKEC in Appendix D.

Approximation ratio and Complexity. Algorithm SKEC finds
SKECq exactly and has an approximation ratio of 2/

√
3 accord-

ing to Theorem 5. SKEC utilizes the current best circle to prune
the search space when finding SKECoq . Assuming that there are
n objects in the search space around an object in the worst case,
the number of checks in procedure findOSKEC() is O(n2). We
also need to read the objects within a circle, which costs at most
O(n). Hence, the time complexity is O(|O′|n3). The high time
complexity makes SKEC impractical especially when n is large
(in the worst case n = |O′|).

Considering the high complexity of SKEC for finding SKECq
exactly, we next propose two algorithms for finding SKECq ap-
proximately with much better efficiency.

4.3 Algorithm SKECa
In SKEC , on each relevant object o we find the o-across small-

est keywords enclosing circle (SKECoq) exactly in procedure fin-
dOSKEC(). In the SKECa algorithm we propose to find SKECoq
approximately to gain better efficiency.

4.3.1 Finding SKECoq Approximately
The idea of this algorithm is based on the following property of

keywords enclosing circles.
Property 1: Given a set of keywords ψ and an object o, if there
exists no o-across keywords enclosing circle (KECoq) with diameter
D, then no KECoq exists whose diameter is smaller than D.

PROOF. This can be proven by contradiction. If there exists an
o-across keywords enclosing circle C with diameterD′ smaller than
D, at object o we can draw a circumscribed circle Ccirc of C with
diameter D, and it is obvious that Ccirc is also an o-across key-
words enclosing circle, leading to a contradiction.

The property inspires us to use binary search to find the diameter
and the position of SKECoq . Given a valueD, if we can find a KECoq
on object o with diameter D, we know that D must be an upper
bound of ø(SKECoq), and we will try smaller D in the subsequent
search. Otherwise, if using valueD we can find no KECoq on object
o,Dmust be a lower bound of ø(SKECoq) (Property 1), and we need
to enlarge D in the subsequent search. We repeat this process until
the gap between the upper bound and the lower bound is smaller
than a certain threshold α.

Parameter α is the error tolerance of the binary search, and we
present how to set this parameter smartly based on the result of
algorithm GKG in Section 4.3.3. As to be shown in Section 4.3.3,
by setting a query-dependent value for α based on the result of
algorithm GKG , we are able to guarantee the approximation ratio
of ( 2√

3
+ ε) for SKECa , where ε is an arbitrarily small value.

We set the initial upper bound of ø(SKECoq) by the diameter of
the current best circle, because we aim to find a circle with smaller
diameter than the current one. The lower bound can be simply set
to 0. However, in order to accelerate the binary search, we use the
following lemma to improve the lower bound of ø(SKECoq).
Lemma 1: ø(SKECoq) ≥ δ(Ggkg)/2, where Ggkg is the group
found by algorithm GKG .

PROOF. We denote the group enclosed in SKECoq by Gq . We
obtain ø(SKECoq) ≥ δ(Gq) (Theorem 4)≥ δ(Gopt) ≥ δ(Ggkg)/2
(Theorem 2).

Procedure findAppOSKEC(o, δ(Ggkg), Ccur , α)
1 searchUB ← ø(Ccur );
2 oskec← circleScan(o, searchUB);
3 if oskec is null then return null ;
4 searchLB ← δ(Ggkg)/2;
5 while searchUB − searchLB > α do
6 diam← (searchUB + searchLB)/2;
7 C ← circleScan(o, diam);
8 if C 6= ∅ then
9 searchUB ← diam;

10 oskec← C;
11 else searchLB ← diam ;
12 return oskec;

As described in Procedure findAppOSKEC(), we first set the up-
per bound of ø(SKECoq) by the diameter of the current best cir-
cle (line 1). Then we use searchUB to search for an o-across
keywords enclosing circle by invoking the function circleScan()
(to be described in Section 4.3.2) (line 2). If no such circle ex-
ists, we do not need to search on o because ø(SKECoq) must be
larger than the diameter of the current best circle according to Prop-
erty 1 (line 3). We set the lower bound of ø(SKECoq) according to
Lemma 1 (line 4). The binary search stops when the gap between
searchUB and searchLB is smaller than α (lines 5–11).

By replacing the procedure findOSKEC() with findAppOSKEC()
in Algorithm 1, we obtain the SKECa algorithm. SKECa finds
SKECq approximately, and the diameter of the circle found is smaller
than ø(SKECq) + α.

4.3.2 Procedure circleScan()
In each step of the binary search in the SKECa algorithm, we

invoke Procedure circleScan() to check if there exists a KECoq with
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diameter D on a given object o. This procedure is a key operation
of Algorithm SKECa , and is non-trivial.

The idea of finding a KECoq with diameter D is as follows: If
there exists such a circle, besides o there must exist another object
falling on the boundary of this circle (we can always rotate the cir-
cle around o to assure this). Hence, from the objects whose distance
to o is smaller than D, we randomly select one and make it on the
boundary of the circle, and we can fix the position of this circle.
Then, we rotate this circle from this position, and if at a certain
position the objects inside this circle can cover all the query key-
words, we know that a KECoq with diameter D is found. If we have
rotated the circle back to the beginning position but still cannot find
a feasible group, we know that no KECoq with diameter D exists.
Figure 4 illustrates the sweeping area around an object o given D
as the diameter, which is the circle with dashed lines.

D

Figure 4: Sweeping area

o

oj

oj-in oj-out

Figure 5: Computing two angles
We use the virtual bR*-tree to read all objects in the sweeping

area. Before the checking on an object o by rotating the circle, we
first check whether all keywords can be covered by the objects in
the sweeping area, and if not, there exists no KECoq with diameter
D and the checking on o is thus avoided.

Now we present how to efficiently rotate the circle to find a
KECoq with diameter D. We rotate the circle clockwise. Note that
during the rotation, each object in the sweeping area falls on the
boundary of the circle only twice. That is, each object is scanned
outside-in or inside-out by the circle exactly once. We map the ob-
jects in the sweeping area around o to a polar coordinate system
with o as the pole and the horizontal line pointing to the right as
the polar axis. On each object oj in the sweeping area, we com-
pute two polar angles when oj touches the boundary: 1) when oj is
entering the circle, we find the center point of the circle at the cur-
rent position and we compute the polar angle of the center point,
denoted by oj-in; and 2) when oj is exiting the circle, we compute
the polar angle of the center point of the circle at the current posi-
tion, denoted by oj-out. Figure 5 shows an example of computing
oj-in and oj-out in the polar coordinate system with o as the pole.

Next, after we compute the two polar angles for each object in
the sweeping area, we sort all these angles in descending order and
store them in ∠. Initially, we place the circle such that the center
point of the circle has the polar angle equal to the largest angle in ∠.
We check if the objects in this circle can cover all query keywords.
If so, a KECoq is found and we return the circle, and otherwise we
record the keywords covered by these objects with their frequencies
in a table Tab and we start the clockwise rotation from the current
position. When the circle is rotated to a position such that the center
point of the circle has a polar angle equal to the next largest angle
in ∠, we update table Tab because the objects enclosed in the circle
change. If the angle is an object inside-out angle, we remove from
Tab the keywords covered by the object to be rotated out of the
circle. If the angle is an object outside-in angle, we update Tab
by adding in the keywords covered by the object to be rotated in
the circle. If Tab contains all query keywords we terminate the
checking, and otherwise we repeat the above rotation process until

we find a KECoq or all angles in ∠ are reached. The pseudo code is
given in Procedure circleScan.

Procedure circleScan(o, diam)
1 ∠← empty List;
2 Initialize Tab by q;
3 G← ∅;
4 foreach object oj ∈ O′ do
5 oj -in← getInAngle(o, diam, oj );
6 oj -out← getOutAngle(o, diam, oj );
7 ∠.addTuple(oj -out, out, oj );
8 if oj -out < oj -in then
9 G← G ∪ oj ; // oj in the initial circle

10 Tab add oj .ψ;
11 else ∠.addTuple(oj -in, in, oj ) ;
12 if Tab is full then return G ;
13 sort ∠ by angle in ascending order;
14 foreach tuple (angle, type, o) in ∠ do
15 if type = in then
16 G← G ∪ o;
17 Add o.ψ to Tab;
18 if Tab is full then return G ;
19 else
20 G← G \ o;
21 Remove o.ψ from Tab;
22 return ∅;

o0:t1

o1:t4

o2:t1t4

o3:t2

o4:t2t3

o5:t4

o1-out

o2-out

o4-in

o5-in

(a) Circle rotation

o2-in

o1-in

o3-in

o2-out

o5-in

o5-out

o4-out

o4-ino1-out

o3-out

(b) Angles computed
Figure 6: Circle scan procedure w.r.t. query {t1, t2, t3, t4}

Example 3: Figure 6 shows an example of the checking process.
The outside-in polar angles are marked as blue lines and the inside-
out polar angles are marked as red lines. Assume that the rotation
reaches angle o1-out, and before that the keyword-frequency table
Tab is {t1:2, t2:1, t4:2}. Since o1-out is an object inside-out angle,
we remove the keywords covered by o1 and we obtain Tab = {t1:2,
t2:1, t4:1}. The rotation stops at the next angle o2-out, and we
update Tab as {t1:1, t2:1}. The next largest angle is o4-in, and we
get Tab = {t1:1, t2:2, t3:1}. Since Tab still cannot cover all query
keywords, we continue the rotation and we reach o5-in next. Tab
is updated as {t1:1, t2:2, t3:1, t4:1}, and a KECoq is found now and
we stop the checking and return the result.

Suppose there are n objects in the sweeping area. The time com-
plexity of sorting the polar angles is O(n logn). Each outside-in
angle and inside-out angle is scanned once during the sweeping. At
the initial position the text descriptions of all objects in the sweep-
ing area are read, which has the complexity of O(n), and each
subsequent rotation only has complexity of O(1). Hence, the rota-
tion and checking together has complexityO(n), and the total time
complexity of this procedure is O(n logn).

4.3.3 Approximation ratio and Complexity
SKECa finds a circle under the error tolerance α. Let Gskeca

denote the group found by SKECa . That is, it is guaranteed that
ø(MCCGskeca) ≤ ø(SKECq) + α. We propose an approach to
setting a query-dependent threshold value for α such that we can
assure an approximate ratio of ( 2√

3
+ ε) for SKECa , where ε is an

arbitrarily small value. The idea is to utilize the result returned by
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the 2-approximation algorithm GKG . Specifically, after we obtain
a group Ggkg by invoking GKG , we set α = εδ(Ggkg)/2, and we
have the following lemma.
Theorem 6: The SKECa algorithm has an approximation ratio of
2√
3

+ ε by setting α = εδ(Ggkg)/2.
PROOF. See Appendix E
The time complexity is also affected by parameter ε. The bi-

nary search range sr is ø(MCCGgkg ) − δ(Ggkg)/2 ≤ ( 2√
3
−

1
2
)δ(Ggkg). The binary search stops when the gap between the

search upper and lower bounds is smaller than α. Hence, the bi-
nary search takes O(log(sr/α)) steps, and it can be computed that
sr/α ≤ ( 2√

3
− 1

2
)δ(Ggkg)/(εδ(Ggkg)/2) = ( 4√

3
− 1)/ε.

In the SKECa algorithm, in the worst case, the binary search
would be performed on all objects in the dataset. Therefore, the
time complexity in the worst case is O(|O′| log 1

ε
n logn), where

|O′| is the number of objects relevant to the query, O(log 1
ε
) is

the steps of binary search performed on an object, and O(n logn)
is the complexity of one step where n is the number of objects in
the sweeping area in the worst case. The circleScan() method is
invoked only when the sweeping area covers all query keywords
on an object. Thus, in practice, the query processing time is much
better than analyzed.

4.4 Algorithm SKECa+
As analyzed in Section 4.3.2, the cost of checking whether there

exists a KECoq with diameter D is determined by the number of
objects in the sweeping area which depends on the value of D. In
the SKECa algorithm, the binary search is performed on each ob-
ject, and the minimum diameter of the keywords enclosing circle
obtained on processed objects is used as the upper bound in subse-
quent search on remaining objects. Hence, if on the early processed
objects the circles found are large, the upper bound is loose for sub-
sequent search and the checking cost is high.

To avoid this problem and improve efficiency, we propose to per-
form binary search on all objects inO′ together, instead of on each
of them separately. Specifically, we find the diameter and the posi-
tion of SKECq directly using binary search, instead of first finding
all object-across smallest keywords enclosing circles and then se-
lecting the best one. We call the process enhanced binary search.

We set the range of the enhanced binary search as follows. Given
a query q, if there exists an o-across keywords enclosing circle
with diameter D on any object o in O′, D is an upper bound of
ø(SKECoq), and obviously it is also an upper bound of ø(SKECq).
If on an object o there exists no o-across keywords enclosing cir-
cle with diameter D, D is a lower bound of ø(SKECoq); if D is a
lower bound of ø(SKECoq) for every o inO′, D is a lower bound of
ø(SKECq). The enhanced algorithm is presented in Algorithm 3.

We obtain O′ and set the upper and lower bounds as we do in
Algorithm 1. It can be proven that δ(Ggkg)/2 is also a lower bound
of SKECq by following the proof in Lemma 1. On each object o,
we use array maxInvalidRange to record the largest diameter
such that there exists no o-across keywords enclosing circle with
diametermaxInvalidRange[o] according to the previous checks.
Initially, maxInvalidRange[o] is set to 0 (line 7). The value is
used to avoid unnecessary checking on an object o.

The enhanced binary search is applied on all objects together
(lines 9-24). On each object o in O′, before we find SKECoq with
diameter diam, we first compare whether diam is less than the
invalid diameter stored in maxInvalidRange to avoid unneces-
sary checking. We can safely discard o if diam is smaller than
maxInvalidRange[o] according to Property 1 (lines 12–13). If
we can find a keywords enclosing circle KECoq with diameter diam,
we update the upper bound of SKECq and the current best circle,

Algorithm 2: SKECa+ (q, α)
1 Ggkg ← GKG (q); Ccur ← MCCGgkg

;
2 O′ ← objects containing at least one keyword in q;
3 searchUB ← ø(Ccur );
4 searchLB ← δ(Ggkg)/2;
5 foreach object o inO′ do
6 if o.ψ = q then return {o} ;
7 maxInvalidRange[o]← 0;
8 while searchUB − searchLB > α do
9 diam← (searchUB + searchLB)/2;

10 foundResult← False;
11 foreach o inO′ do
12 if diam < maxInvalidRange[o] then
13 continue;
14 oskec← circleScan(o, diam);
15 if oskec 6= ∅ then
16 searchUB ← diam;
17 Ccur ← oskec;
18 foundResult← True;
19 break;
20 else
21 if diam > maxInvalidRange[o] then
22 maxInvalidRange[o]← diam;
23 if foundResult = False then
24 searchLB ← diam;
25 Gskeca ← objects in Ccur ;
26 return Gskeca;

and we terminate the checking using diam immediately (lines 15–
19). Otherwise, we update the maximum invalid diameter of o if
it is smaller than diam, because no o-across keywords enclosing
circle with diameter diam exists (lines 20–22). If on all objects we
fail in finding the keywords enclosing circle with diameter diam,
we increase the lower bound for subsequent search (lines 23–24).

Approximation ratio and Complexity. Since SKECa+ finds the
same circle as found in SKECa , the result group is the same as that
returned by SKECa , and thus this algorithm also has an approxi-
mation ratio of ( 2√

3
+ ε).

SKECa+ performs binary search on all objects relevant to the
query together. The bounds for binary search are the same as those
used in SKECa , and thus the steps of binary search is alsoO(log 1

ε
).

SKECa+ also invokes the procedure circleScan(), which has com-
plexity O(n logn). In the worst case, the binary search is per-
formed on all objects as well. Therefore, the worst case time com-
plexity of SKECa+ is also O(|O′| log 1

ε
n logn). However, after

we know a keywords enclosing circle with diameter diam exists
on an object in SKECa+ , we can immediately stop the search using
diam and avoid the checking on the remaining objects. Therefore,
it has much better efficiency in practice than does SKECa , which
is to be shown in the experimental study in Section 6.

The number of objects n in the sweeping area w.r.t. an object
depends on the query. If the query keywords are frequent and the
optimal result has a large diameter, n would be large. We study
the effect of both the frequencies of query keywords and the diam-
eter of the optimal result on the efficiency of our algorithms in the
experiments.

5. EXACT ALGORITHM
It is challenging to develop an efficient exact algorithm formCK

queries, as an exact algorithm cannot avoid an exhaustive search in
the object space. The best known solution [22] performs exhaus-
tive search on all objects that contain at least one query keyword,
and thus the computational cost is high if such objects are large
in number. In this section, we propose an exact algorithm, which
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leverages the result of our approximation algorithm SKECa+ to
greatly reduce the space of exhaustive search.

5.1 Algorithm Framework
If we know the smallest circle that encloses the optimal group

Gopt, i.e., MCCGopt , we can do exhaustive search only on objects
in MCCGopt and the search space can be reduced significantly,
compared to the search space of the best known algorithm [22].
However, we know neither the radius nor the center of MCCGopt .
Note that the circle MCCGopt is different from the smallest key-
words enclosing circle w.r.t. q, i.e., SKECq . For example, as shown
in Figure 2, given a query q = {t1, t2, t3}, SKECq is MCCG1 , but
the optimal group G2 is enclosed in MCCG2 .

Although we do not know the exact size of MCCGopt , we prove
that the diameter of MCCGopt can be bound by the diameter of
SKECq as follows.
Lemma 2: ø(MCCGopt ) ≤ 2√

3
ø(SKECq).

PROOF. Denote the group enclosed in SKECq by Gskec. Ac-
cording to Theorem 4, ø(MCCGopt) ≤ 2√

3
δ(Gopt), and ø(SKECq)

≥ δ(Gskec). Because Gopt has the smallest diameter, we have
ø(MCCGopt) ≤ 2√

3
δ(Gopt) ≤ 2√

3
δ(Gskec) ≤ 2√

3
ø(SKECq).

With Lemma 2, we propose to utilize SKECq to reduce the ex-
haustive search space. Our basic idea is that, we find the circles
that might be MCCGopt utilizing SKECq . Within each such can-
didate circle, we perform an exhaustive search (with some pruning
strategies) on the objects enclosed by it to find a group. After all
candidate circles are found and checked, the best group found must
be the optimal group. Note that we use SKECa+ to find approx-
imate SKECq , rather than SKEC to find the exact SKECq , which
is computationally expensive. The circle returned by SKECa+ has
a diameter not exceeding ø(SKECq) + α. Thus, ø(MCCGopt) is
bound by 2√

3
times the diameter of the circle returned by SKECa+

as well.
We proceed to explain how to find the candidate circles that

might be MCCGopt . Since MCCGopt is the smallest circle that en-
closes the optimal group Gopt, there must exist an object in Gopt
on the boundary of MCCGopt . The problem is that we do not know
this object, which can be any object o containing at least one query
keyword. To avoid finding candidate circles on each such object
o, we establish the following lemma to filter out objects that can-
not be on the boundary of MCCGopt . We denote by Gskeca the
group found by SKECa+ and the smallest circle enclosing Gskeca
by MCCGskeca .
Lemma 3: On an object o, if the diameter of SKECoq is larger than
2√
3

times the diameter of MCCGskeca , o cannot be on the boundary
of MCCGopt .

PROOF. If o is on the boundary of MCCGopt , ø(SKECoq) ≤
ø(MCCGopt ) (note that even though an object o is indeed the object
on the boundary of MCCGopt , SKECoq may still not be MCCGopt ).
Because ø(MCCGopt ) ≤ 2√

3
ø(SKECq) (according to Lemma 2),

and ø(MCCGskeca ) ≥ ø(SKECq) (because of the binary search),
we have ø(SKECoq) ≤ 2√

3
ø(MCCGskeca ), leading to a contradic-

tion.
With Lemma 3, we prune some objects from consideration for

finding candidate circles as follows: Recall that in SKECa+ , we
use an array maxInvalidRange to store the maximum diame-
ter on each object o such that there exists no KECoq with diameter
maxInvalidRange[o]. This means that ø(SKECoq) must be larger
than maxInvalidRange[o]. Hence, in the exact algorithm, we
can discard o if maxInvalidRange[o] ≥ 2√

3
ø(MCCGskeca ) ac-

cording to Lemma 3. If an object o cannot be pruned, o is possibly

on the boundary of MCCGopt , and we find all candidate circles that
cover all query keywords and pass through o, and in each of them
we perform an exhaustive search.

Algorithm 3: EXACT (q, α)
1 Gskeca ←SKECa+ (q, α);
2 diam← 2√

3
ø(MCCGskeca

);

3 bestGroup ← Gskeca;
4 get the array maxInvalidRange computed in SKECa+ ;
5 foreach o inO′ do
6 if maxInvalidRange[o] < diam then
7 circleScanSearch(o, diam, bestGroup);
8 return bestGroup;

The pseudocode is described in Algorithm 3. We first invoke
SKECa+ to get an approximate result (line 1). Then we compute
the upper bound diam of the diameter of the smallest circle that
encloses the optimal group (line 2). On each object o, if it cannot
be pruned (line 6), we invoke Procedure circleScanSearch() to find
all keywords enclosing circles with diameter diam around o, to do
exhaustive search in each such circle, and to update the best group
(line 7). After all objects inO′ are processed, we return bestGroup
as the result.

Procedure circleScanSearch(). In this procedure, we first find all
o-across keywords enclosing circles with diameter 2√

3
ø(MCCGskeca )

on an object o, which are candidate circles. The idea is similar to
that of Procedure circleScan(). We first fix a sweeping area around
o that contains all objects relevant to the query whose distances to
o are smaller than 2√

3
ø(MCCGskeca ). In this sweeping area, we

rotate the circle around o with diameter 2√
3

ø(MCCGskeca ) clock-
wise. We also use a table Tab to store all keywords with their
frequencies covered in the rotating circle, and update it once an ob-
ject is rotated inside-out or outside-in. Once all query keywords
are contained in Tab, we know that a KECoq (which is a candidate
circle) is found.

In circleScan(), once a KECoq is found it returns immediately, be-
cause the procedure only checks if there exists a KECoq with a given
diameter. In circleScanSearch() we need to perform an exhaustive
search to find the best group in the circle. Hence, after the group
is found, we still need to repeat the above process to find all candi-
date circles on o, and to enumerate the best group in each of them.
We invoke Procedure search() to perform exhaustive search to enu-
merate the group with the smallest diameter in a candidate circle,
which is presented as follows.

5.2 Procedure search()
The search() procedure is designed as a branch-and-bound pro-

cess. We adopt the depth-first-search strategy to do enumeration.
We use selectedSet to store the objects that are already selected
in the current enumeration. The object o on which the search is
performed is always in selectedSet since it must be contained in
the generated group. We use candidateSet to store the objects in
the circle that are possible to combine with objects in selectedSet
to form a group whose diameter is smaller than that of the current
best group.

In each step, we select one object from candidateSet and check
if combining it with the objects in selectedSet can generate a bet-
ter group. If so, we remove this object from candidateSet and add
it to selectedSet. This step is performed iteratively. The level of
this depth-first-search is at most the number of query keywords, be-
cause each enumerated object contains at least one new query key-
word. The current best group curGroup is updated when a group
covering all the query keywords with smaller diameter is found.
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The search complexity is exponential with the number of objects
relevant to the query in a candidate circle. We develop several prun-
ing strategies utilizing both textual and spatial properties in search()
to improve efficiency.
Pruning Strategy 1. Given an object o, and letG denote the group
selectedSet ∪ o, if the diameter of G exceeds the diameter of
the current best group curGroup, o does not need to be added
to selectedSet. This is because that, for any group G′ generated
from G, it is true that δ(G′) ≥ δ(G). Hence, the diameter of G′ is
also larger than δ(curGroup), which means that no better groups
can be obtained from G.
Pruning Strategy 2. If an object o cannot contribute any new key-
word to selectedSet, o is not necessary to be added to selectedSet.
This can be justified as follows: Denote the group selectedSet∪ o
by G. selectedSet and G cover the same set of query keywords
and δ(selectedSet) ≤ δ(G), and thus G can be pruned.
Pruning Strategy 3. If the objects in candidateSet cannot cover
the keywords that have not be covered by selectedSet, we can
stop the search using selectedSet. This is because that even if we
select all the objects in candidateSet, and combine them with the
objects in selectedSet, a group covering all the query keywords
cannot be generated.

Procedure search(q, selectedSet, candidateSet, maxId)
1 if selectedSet.ψ = q then
2 if δ(selectedSet) ≤ δ(curGroup) then
3 curGroup← selectedSet;
4 return curGroup;
5 if δ(selectedSet) > δ(curGroup) then return ∅ ;
6 nextSet← ∅;
7 leftKeyowrds← ∅;
8 foreach candidate object oc in candidateSet do
9 if δ(selectedSet ∪ oc) > δ(curGroup) then continue ;

10 if (q − selectedSet.ψ) ∩ oc.ψ = ∅ then continue ;
11 if oc.Id < maxId then continue ;
12 nextSet← nextSet ∪ oc;
13 leftKeywords← leftKeywords ∪ oc.ψ;
14 if leftKeywords ∪ selectedSet.ψ! = q then
15 return curGroup;
16 foreach object on in nextSet do
17 newselSet← selectedSet ∪ on;
18 newcandSet← nextSet \ on;
19 group← search(q, newselSet, newcandSet, on.Id);
20 if δ(group) < δ(curGroup) then
21 curGroup← group;
22 return curGroup;

In Procedure search(), if selectedSet already covers all query
keywords, we compare this group with the current best group, and
we return the better one as the result (lines 1–4). We then check if
the selected group is already worse than the current best solution
(line 5). In lines 8–13, we scan candidateSet and filter out ob-
jects that cannot be combined with objects in selectedSet. Line 9
applies the pruning strategy 1, line 10 applies the pruning strategy
2, and line 11 is used to avoid enumerating duplicate groups. We
check whether the pruning strategy 3 is satisfied in lines 14–15.
After we add a new object to selectedSet, we invoke the proce-
dure recursively to find the group with newly selected object set
newselSet and new candidate object set newcandSet and update
curGroup correspondingly (lines 17–21).

Complexity. If there are relevant n objects in the sweeping area
in circleScanSearch() in the worst case, the complexity of comput-
ing and sorting the rotation angles is O(n logn). The exhaustive
search in the sweeping area has complexityO(n|q|−1), because the
depth-first search level is at most |q| and the object on which the
search is performed already contains at least one query keyword.

Since the diameter of the candidate circle is bounded as shown in
Lemma 2, n is usually not large. In summary, on an object the total
search complexity is O(n logn + n|q|−1) ≈ O(n|q|−1). If there
are O′ objects relevant to the query, the worst case time complex-
ity of EXACT is O(|O′|n|q|−1), where in general n � |O′|. In
practice, we only do the search on objects satisfying the bound as
described in Lemma 3, and thus the practical performance is better
than analyzed. Note that the worst case time complexity of the best
known solution [22] is O(|O′||q|), which it worse than EXACT .
As to be shown in the experimental study in Section 6, EXACT is
much more efficient.

6. EXPERIMENTAL STUDY

6.1 Experimental Settings
Algorithms. We evaluate four approximation algorithms, namely
GKG (in Section 3), SKEC (in Section 4.2), SKECa (in Section 4.3),
and SKECa+ (in Section 4.4), and the exact algorithm EXACT (in
Section 5). We also compare our exact algorithm with the state-
of-the-art solution proposed in the work [22], denoted by VirbR ,
and the methods of adapting the spatial group keyword query [16],
denoted by ASGK and ASGKa (Section 2.2).

Dataset Number of Objects Unique words Total words
NY 485,059 116,546 1,143,013
LA 724,952 161,489 1,833,486
TW 1,000,100 487,552 5,170,495

Table 1: Dataset properties
Datasets. We use three real-life datasets. Table 1 lists some prop-
erties of these datasets. Datasets NY and LA are crawled using
Google Place API in New York and Los Angeles, respectively.
Each crawled object has a name and a type such as “food” and
“restaurant,” used as the textual description of the object, and a pair
of latitude and longitude representing its location. Dataset TW is
crawled from Twitter within the area of USA. Each geo-tweet is
treated as a geo-textual object, and its content is used as the de-
scription of the object and its latitude and longitude are used as the
geo-location of the object.

The location of an object is in form of a pair of latitude and lon-
gitude. In order to compute the Euclidean distance between loca-
tions, we convert the data to the UTM (Universal Transverse Mer-
cator coordinate system) format, using World Geodetic System 84
specification.
Query generation. We generate 5 query sets with different num-
bers of keywords, i.e., 2, 4, 6, 8, and 10, for each dataset. Each set
comprises 50 queries. According to the complexity analysis of the
proposed approximation and exact algorithms, their runtimes are
affected by the diameter of the optimal group w.r.t. a given query.
When evaluating the effect of a certain parameter, we try to bound
the diameter of the optimal group for a query, so that the effect of
the diameter does not vary too much for queries in one set. For
example, to set the upper bound diameter at 20% of the diameter
of the whole dataset, we first randomly draw a circle with diame-
ter no larger than 20% of the diameter of all objects in the dataset,
and then we randomly select the terms that appear in this circle ac-
cording to their frequencies. This makes sure that the diameter of
the optimal group cannot exceed 20% of the diameter of the whole
dataset. It is hard to impose a lower bound constraint when gen-
erating queries. We also study the effect of the diameter bound on
the efficiency of algorithms.

We set the number of query keywords to 6 and the diameter
bound to 20% of the diameter of a dataset by default in our ex-
periments.
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Setup. The virtual bR*-tree index structure is disk resident, and
the page size is set to 4KB. The number of children of a node in the
tree is set to 100. All algorithms were implemented in C++ and run
on Linux with a 2.66GHz CPU and 8GB RAM.

6.2 Experimental Results

6.2.1 Tuning the binary search parameter ε
The value of ε affects both efficiency and accuracy of SKECa

and SKECa+ . We vary ε from 0.0004 to 0.25. Figures 9(a) and 9(b)
show the runtime and the accuracy of SKECa and SKECa+ when
we vary ε on the LA dataset, respectively.
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Figure 7: Varying ε
It can be observed that SKECa always runs slower than SKECa+ .

Recall that the steps of binary search needed to be performed is lin-
ear with O(log 1

ε
) in SKECa . Hence, as ε increases, SKECa runs

faster because a larger ε reduces the steps of binary search per-
formed on each object. SKECa and SKECa+ return the same re-
sult, and the difference is the way of performing the binary search.
Parameter ε also determines the steps of binary search in SKECa+ .
However, since SKECa+ performs the binary search on all objects
relevant to the query together, its runtime is only slightly affected
and is much better than that of SKECa .

The two algorithms have the same accuracy, and the accuracy
drops as ε becomes larger. Using a smaller ε can obtain a circle that
is more close to SKECq , and thus the group enclosed in the circle
found finally is more close to the optimal result. This is consistent
with the ratio of the two algorithms, i.e., ( 2√

3
+ ε).

Because SKECa+ outperforms SKECa consistently, we report
the results of SKECa+ in subsequent experiments only. Based on
Figure 6, we set ε to 0.01 for SKECa+ by default, because it strikes
a good tradeoff between accuracy and efficiency. Similar results
are observed on the other two datasets, and we report them in Ap-
pendix F.

6.2.2 Varying the number of query keywords
Figure 8 shows the runtime (in logarithmic scale) and accuracy

of the six algorithms, i.e., GKG , SKECa+ , EXACT , VirbR , ASGK
and ASGKa when we vary the number of query keywords on each
dataset.

On all datasets, SKECa+ achieves better accuracy than does GKG ,
because it has a better approximation ratio. SKECa+ can always
obtain nearly optimal groups. GKG runs the fastest on all datasets.
It is interesting to observe that GKG runs faster as the number of
query keywords increases on some datasets. The reason is as fol-
lows. GKG only searches for a group of objects that contain the
most infrequent query keyword. Given more query keywords, the
most infrequent keyword is more likely to have lower frequency,
and thus fewer objects need to be checked. SKECa+ runs slower as
the number of query keywords increases. Recall that the complex-
ity of SKECa+ is O(|O′| log 1

ε
n logn). Given more query key-

words, the number of objects relevant to the query |O′| becomes
larger. In addition, the number of relevant objects in the sweeping
area n in Procedure circleScan() also increases.
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Figure 8: Varying number of query keywords

EXACT outperforms VirbR by more than an order of magni-
tude on all datasets when queries contain more than 4 keywords.
EXACT can answer most queries within 10 seconds, but VirbR
takes several minutes to answer a query in average when queries
contain 8 or 10 keywords. Recall that the complexity of EXACT
is O(|O′|n|q|−1). As the number of query keywords increases,
the number of objects relevant to the query |O′| increases, and the
number of objects in the sweeping area n also increases, and hence
EXACT runs slower. The complexity of VirbR is O(|O′||q|), and
thus it also runs slower as the number of query keywords increases.
Recall that the EXACT algorithm first invokes SKECa+ to reduce
the search space then it performs the exhaustive search. The exper-
imental results show that SKECa+ is able to prune the search space
significantly, thus making EXACT efficient.

We observe that the performance of ASGK is much worse than
VirbR and EXACT . Both the efficiency and accuracy of ASGKa
are much worse than SKECa+ . They are not originally developed
to process the mCK query, and the results show the adaption of the
algorithms [16] for processing the mCK query is not efficient. We
will ignore ASGK and ASGKa in the subsequent experiments.

Figure 9 shows the comparison of the algorithms SKEC and
SKECa+ on dataset LA. The runtime of SKECa+ is much better
than SKEC , which is consistent with the analysis of the time com-
plexity of the two algorithms in Section 4. SKEC is extremely slow
when the number of query keywords is large, because the number
of relevant objects (O′) becomes larger, and the worst case com-
plexity of this algorithm is O(|O′|4). When there are more than 6
keywords, lots of queries take at least 5 minutes to finish, and thus
we only report the results on query sets containing 2, 4, and 6 key-
words to make the figure readable. It can be observed that the two
algorithms have similar accuracy, because we set ε to 0.01, a very
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small value to control the error of SKECa+ . The relative perfor-
mance comparisons between SKEC and SKECa+ are qualitatively
similar in other experiments and we do not report them.
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Figure 9: Comparing SKEC with SKECa+
6.2.3 Varying the optimal group diameter bound

In this set of experiments, we study the effect of the diameter
bound of the optimal group for a query. We vary the diameter
bound from 10% to 30% of the diameter of a dataset. Figure 10
shows the results on LA and TW.

Figures 10(a) and 10(e) show the runtime of two approximation
algorithms on LA and TW. GKG searches for a group around each
object containing the most infrequent keyword, and the group di-
ameter does not affect the runtime of GKG . As the diameter bound
increases SKECa+ runs slower. The reason is that with a larger
bound the optimal group for a query is more likely to have a larger
diameter, and SKECa+ needs to scan a larger sweeping area to find
a keywords enclosing circle with the given diameter. From Fig-
ures 10(b) and 10(f) we can see that SKECa+ has better accuracy
than GKG and is always able to achieve nearly optimal results.

Due to the hardness of answering mCK queries, the exact al-
gorithms may be very slow on some queries which dominate the
average running time. For the readability of our figures, we set a
timeout threshold to 1 minute. We observe that the queries where
VirbR succeeds to find the result within the timeout threshold can
always be answered by our algorithm EXACT . When comparing
the two algorithms, we only report on queries where both algo-
rithms succeed to return a result within the time limit.

Figures 10(c) and 10(g) show the runtime of EXACT and VirbR
(y-axis in logarithmic scale) on LA and TW. It is shown that EX-
ACT outperforms VirbR by about one order of magnitude on those
queries that both algorithms can finish in 1 minute. The success
rate of two algorithms is shown in Figures 10(d) and 10(h). EX-
ACT always has a better success rate (close to 100%). Both al-
gorithms have lower success rate as the diameter bound increases.
This is because that if the optimal group has a larger diameter the
exhaustive search takes longer time in both algorithms. We observe
similar result on NY and ignore it.

To further study these slow queries, Figure 11 compares the run-
time and success rate of EXACT and VirbR , when the timeout
threshold varies from 15 seconds to 4 minutes and the diameter is
bounded by 30% of the whose space. EXACT solves most queries
within 15 seconds and it always outperforms VirbR .

We study the cases where EXACT greatly outperforms VirbR ,
and we find that the result groups of these queries have small diam-
eters. Recall that EXACT first reduces the search space by utilizing
SKECa+ and then performs the exhaustive search in the reduced
space. For queries that cannot be solved within 15 seconds by both
algorithms, we find that these queries contain keywords with both
high and low frequency and the diameter of the result group is large.

6.2.4 Varying the query keywords frequencies
In this set of experiments, we vary the frequencies of query key-

words and evaluate the performance of five algorithms on LA, i.e.,
GKG , SKECa+ , EXACT , and VirbR . We rank terms in ascend-

GKG SKECa+ EXACT VirbR

 0

 0.2

 0.4

 0.6

<10% <15% <20% <25% <30%

R
u
n
ti

m
e
 (

se
c
o

n
d
s)

Diameter Bound

(a) Runtime (LA)

1.0

1.05

1.10

1.15

1.20

<10% <15% <20% <25% <30%

A
p
p
ro

x
im

at
io

n
 R

at
io

Diameter Bound

(b) Appro. Ratio (LA)

 0.1

 1

 10

<10% <15% <20% <25% <30%

R
u
n
ti

m
e
 (

se
c
o

n
d
s)

Diameter Bound

(c) Runtime (LA)

60%

70%

80%

90%

100%

<10% <15% <20% <25% <30%

S
u

c
c
e
ss

 R
a
te

Diameter Bound

(d) Success Rate (LA)

 0

 0.1

 0.2

 0.3

<10% <15% <20% <25% <30%

R
u
n
ti

m
e
 (

se
c
o

n
d
s)

Diameter Bound

(e) Runtime (TW)

1.0

1.05

1.10

1.15

1.20

<10% <15% <20% <25% <30%

A
p
p
ro

x
im

at
io

n
 R

at
io

Diameter Bound

(f) Appro. Ratio (TW)

 0.1

 1

 10

<10% <15% <20% <25% <30%

R
u
n
ti

m
e
 (

se
c
o
n
d
s)

Diameter Bound

(g) Runtime (TW)

70%

80%

90%

100%

<10% <15% <20% <25% <30%

S
u
c
c
e
ss

 R
a
te

Diameter Bound

(h) Success Rate (TW)

Figure 10: Varying optimal group diameter bound
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Figure 11: Varying timeout threshold

ing order of their frequencies, and then generate a query set using
lower x% terms, i.e., we select terms from the x% least frequent
terms to form a query. We vary x% from 20% to 100% to gener-
ate 5 query sets (100% means that the query keywords are selected
from all terms in a dataset according to their frequency, as we do in
previous experiments).

Figure 12 shows the runtime and accuracy of four algorithms. It
can be observed in Figure 12(a) that as the frequency of query key-
words increases, both approximation algorithms run slower. This
is because that more objects need to be taken into consideration
during algorithm execution. The runtime of EXACT and VirbR is
reported only on queries that can be answered within the 1 minute
threshold. EXACT has better success rate as shown in Figure 12(d);
on the queries that both algorithms succeed, EXACT is almost one
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order of magnitude faster than VirbR , as shown in Figure 12(c) (y-
axis in logarithmic scale). EXACT and VirbR run slower as query
keywords become more frequent, which is consistent as analyzed.
We observe similar results on the other two datasets and they are
not reported.
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Figure 12: Varying query keywords frequencies

6.2.5 Scalability
To evaluate scalability, we use 5 datasets containing tweets with

locations, all of which are crawled from Twitter. The largest dataset
contains 5 million tweets, and we sample other datasets from it.
Figure 13 shows the runtime and approximation ratio of four al-
gorithms on TW, i.e., GKG , SKECa+ , EXACT and VirbR (the
number of query keywords is 6). Both approximation algorithms
scale quite well with the size of the dataset, and all queries can be
answered within 1 second by GKG and SKECa+ . The EXACT
algorithm also scales well. VirbR runs slower than EXACT by or-
ders of magnitude, and it takes more than one minute to answer
a query in average when the dataset contains more than 3 million
objects. The accuracy changes only slightly, and SKECa+ always
returns nearly optimal results and has better accuracy than GKG .
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Figure 13: Scalability

7. RELATED WORK
The spatial keyword queries are gaining in prevalence and are

widely used in many real-life applications. For example, in Google
Maps “search nearby” offers users the functionality to retrieve points
of interest around a specified location. Most existing studies on
spatial keyword querying focus on retrieving a list of single geo-
textual objects such that each object returned is both relevant to
query keywords and close to query location. The spatial keyword
queries can be categorized into two types according to how key-
words are used in querying. In some proposals (e.g., [4, 6, 9, 13,
20, 23]), keywords are used as Boolean predicates to filter out ob-

jects that do not contain the keywords, and the remaining objects
are ranked based on their spatial proximity to the query. In other
proposals(e.g., [6, 7, 14]), spatial proximity and textual relevance
are combined by a linear function to rank geo-textual objects.

Several recent proposals consider searching for a group of geo-
textual objects instead of single objects. As described in Section 2.2,
the mCK query is proposed and studied in the works [21, 22]. The
existing studies on the mCK query [21, 22] do not study the hard-
ness of this problem and propose exact algorithms only. We prove
that answering the mCK query is NP-hard and propose both exact
and approximation algorithms. The spatial group keyword query
SGK [2, 16] takes a location and a set of keywords as query argu-
ments. It retrieves a group that covers all the query keywords, has
a small diameter, and is close to the query location. As analyzed
in Section 2.2, one special case of the SGK query [2] is equiva-
lent to the mCK query, and the algorithm proposed is reduced to
the method [21] when being applied to the mCK query, and thus is
worse than the baseline VirbR [22], used in our experiments. As
discussed in Section 2.2, another type of the SGK query [16] can
be adapted to answer the mCK query, and as shown in the exper-
imental study, its performance is much worse than our proposed
algorithm. The SGK query and the mCK query suit different ap-
plication scenarios. Consider the tourist example in Section 1. If
the tourist has already booked a hotel, then the SGK query could be
used where the hotel serves as the query location. Otherwise, the
mCK query is suitable where “hotel" is one of the query keywords.

In addition, some proposals consider spatial keyword queries on
road networks (e.g., [3,18]), and spatial keyword queries on trajec-
tory databases are also studied (e.g., [8, 19, 24]). There also exists
some work (e.g., [12]) querying geo-textual objects whose loca-
tions are represented by rectangles. The problem of spatio-textual
similarity joins is also studied to join two sets of geo-textual ob-
jects [1, 15].

8. CONCLUSION
We study the problem of answering mCK queries in this pa-

per. We prove that this problem is NP-hard. We propose a 2-
approximation greedy approach as a baseline. Utilizing this greedy
method, we first devise an approximation algorithm SKEC that
aims at finding the smallest circle that can enclose a group of ob-
jects covering all query keywords. We prove that its approximation
ratio is 2√

3
. SKEC has a high complexity, and we design another

two approximation algorithms, SKECa and SKECa+ , to find such
a circle approximately for better efficiency. Their approximation
ratio is ( 2√

3
+ ε), where ε can be an arbitrarily small positive value.

We also design an exact algorithm utilizing SKECa+ to reduce the
exhaustive search space significantly. Extensive experiments were
conducted, which verifies our theoretical analysis and shows that
our exact algorithm outperforms the best known solution by an or-
der of magnitude. In the future, it would be of interest to investigate
the problem of answering the mCK query in a distributed setting.
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APPENDIX
A. PROOF OF THEOREM 1

PROOF. We prove the theorem by a reduction from the 3-SAT
problem. An instance of the 3-SAT consists of φ = C1 ∧ C2 ∧
· · · ∧ Cn, where each clause Ci = {xi ∨ yi ∨ zi} (i = 1, · · · , n),
and {xi, yi, zi} ⊂ {u1, ū1, · · · , um, ūm}. The decision problem
is to determine whether we can assign a value (true or false) to
each variable ui, i = 1, ...,m, such that φ is true. We transform an
instance of the 3-SAT problem to an instance of the mCK problem
as follows. We consider a circle of diameter d′. Each variable ui
corresponds to a point on the circle, and we place its negation ūi
diametrically opposite on the circle. Then the distance between ui
and ūi is d′. We set d′ = d + ε, where ε is a sufficiently small
and positive value, such that the distance between any two points
corresponding to different variables is no larger than d.

For each pair of variables ui and ūi, we create a keyword qi
(i = 1, · · · ,m) and associate it with the points corresponding to
ui and ūi. For each clause Ci, we create a keyword qm+i (i =
1, · · · , n) and associate it with the points corresponding to the three
variables in Ci. Therefore, given a 3-SAT instance φ, we have
an mCK query q of n + m keywords. If there exists a result of
q of diameter at most d, then there exists a satisfying assignment
for φ = C1 ∧ C2 ∧ · · · ∧ Cn. On the other hand, a satisfying
assignment of the 3-SAT problem determines a set of points with
diameter at most d covering all keywords in q. Therefore, the proof
is complete.

B. DETAILS OF GKG
The GKG algorithm is detailed in Algorithm 4. We first find the

most infrequent query keyword tinf (line 1). For each object o con-
taining tinf , we utilize the virtual bR*-tree indexing structure [22]
to find the nearest object containing a term t to o. Alternatively, we
can also use other geo-textual indexes in place (such as IR-tree [7])
and our algorithm GKG is equally applicable. We initialize a min
priority queue Queue to store the nodes and objects traversed, and
their minimum distances to o are used as the key. Initially, the root
node of the virtual bR*-tree is inserted intoQueue (line 6). If there
are some keywords uncovered, we find the nearest object for each
of them (lines 9–20). In each loop, we read the element e that is
nearest to o (line 9). If it is an object, we insert it into group and re-
move e.ψ from ucSet (lines 9–10). Otherwise, we read each of its
child node e′, and insert it into Queue only if it covers some key-
words in ucSet (lines 14–20). We compare the group found around
o with the current best group Ggkg , and update Ggkg if group has
smaller diameter (line 21).

C. PROOF OF THEOREM 4
PROOF. 1). If MCCG is determined by two points inG, accord-

ing to Theorem 3, the diameter of MCCG is equal to the distance
between the two points, and thus we have δ(G) = ø(MCCG).

2). Consider that MCCG is determined by three pointsA,B, and
C in G. We use ∠A, ∠B, and ∠C to denote the three angles of the
triangle consisting of the three points. First, it is obvious that the
distance between any two objects cannot exceed the diameter of the
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Algorithm 4: GKG (q, tree)
1 Ggkg ← ∅;
2 tinf ← the most infrequent keyword;
3 foreach object o containing tinf do
4 group← {o};
5 Queue← new min-priority queue;
6 Queue.Enqueue(tree.root, 0);
7 ucSet← q.ψ \ o.ψ ; // uncovered keywords
8 while ucSet is not empty do
9 e← Queue.Dequeue();

10 if e is an object then
11 group← group ∪ e;
12 ucSet← ucSet \ e.ψ;
13 else
14 foreach entry e′ in node e do
15 if ucSet ∩ e′.ψ 6= ∅ then
16 if e is a leaf node then
17 dist← Dist(e′, q);
18 else
19 dist← minDist(e′, q);
20 Queue.Enqueue(e′, dist);
21 if Ggkg is ∅ or δ(group) < δ(Ggkg) then
22 Ggkg ← group;
23 return Ggkg ;

circle, and thus we have δ(G) ≤ ø(MCCG). Second, we assume
∠C is the largest angle. Since ∠A + ∠B + ∠C = 180◦, we can
conclude that ∠C ≥ 60◦. According to Theorem 3, the triangle
is not obtuse, and thus we know that 60◦ ≤ ∠C ≤ 90◦. Because
MCCG is also the circumcircle of the three points, we obtain that
AB

sin∠C = ø(MCCG) according to the law of sines. Hence, we can
get sin 60◦ ≤ AB

ø(MCCG)
≤ sin 90◦. Because δ(G) must be no

smaller than AB, we get
√
3
2

ø(MCCG) ≤ AB ≤ δ(G).
3). When there are more than three points on MCCG, we can

transform this to the cases that MCCG is determined by either two
or three points as follows: first, we select one point on MCCG, and
we remove it from G to check if the minimum covering circle of
the remaining points is the same as MCCG. If so, we ignore it;
otherwise, we select the next point and repeat the above process.
Finally, we will select two or three points that determines MCCG,
and then we can apply the proof in cases 1) and 2).

D. PROCEDURE FINDOSKEC()
First, we read objects whose distances to o are smaller than the

diameter of the current best circle Ccur (line 1). We process these
objects in ascending order of their distances to o. When the second
object oj is fixed, we enumerate the third object om to obtain a
candidate circle Ccan (lines 7-10). Next, if Ccan has a smaller
diameter than the current best circle Ccur , we check if the objects in
Ccan can cover all query keywords (lines 11-18). If so, we update
Ccur as Ccan and begin to enumerate the next circle.

E. PROOF OF THEOREM 6
PROOF. We have δ(Gskeca) ≤ ø(MCCGskeca) according to

Theorem 4, and ø(SKECq) ≤ 2√
3
δ(Gopt) according to Theorem 5.

Hence, we can obtain δ(Gskeca) ≤ 2√
3
δ(Gopt)+α = 2√

3
δ(Gopt)+

εδ(Ggkg)/2. Because δ(Ggkg) ≤ 2δ(Gopt), we have:

δ(Gskeca)

δ(Gopt)
≤ 2√

3
+ ε

δ(Ggkg)

2δ(Gopt)
≤ 2√

3
+ ε.

Thus we complete the proof.

Procedure findOSKEC(o, Ccur )
1 olist← a list of objects inO′ whose distances to o are smaller than

ø(Ccur ), ranked by their distances to o;
2 foreach object oj ∈ olist do
3 if Dist(o, oj) > ø(Ccur ) then
4 break;
5 foreach object om ∈ olist do
6 if Dist(om, o) ≥ Dist(oj , o) or Dist(om, oj) ≥ ø(Ccur)

then
7 break;
8 if oj = om then
9 Ccan ← MCC{o,oj};

10 else
11 Ccan ← MCC{o,oj ,om};
12 if ø(Ccan )<ø(Ccur ) then
13 ucSet← q.ψ \ o.ψ // uncovered keywords
14 foreach object o′ ∈ olist do
15 if o′ in Ccan then
16 ucSet← q.ψ \ o′.ψ;
17 if ucSet is empty then
18 Ccur ← Ccan ;
19 break;
20 return Ccur ;

F. TUNING THE BINARY SEARCH PARAM-
ETER ε

We also study the effect of ε on the efficiency and accuracy of
SKECa and SKECa+ on datasets NY and TW. We vary ε from
0.0004 to 0.25. Figures 14(a) and 14(b) show the runtime and
the accuracy of SKECa and SKECa+ when we vary ε on the NY
dataset, respectively. Figures 14(c) and 14(d) show the runtime and
the accuracy of SKECa and SKECa+ when we vary ε on the TW
dataset, respectively.

It can be observed that the similar results are obtained to that
on LA. SKECa always runs slower than SKECa+ . As ε increases,
their runtime drops, but the accuracy becomes worse. We observe
that on NY and TW, setting ε to 0.01 can also balance the efficiency
and accuracy well. Thus, we use 0.01 as the default value of ε for
all experiments on all datasets.
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Figure 14: Varying ε
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