Efficient Algorithms for Answering the m-Closest Keywords Query

Tao Guo
Nanyang Technological University
Singapore
tguo001@e.ntu.edu.sg

Xin Cao
Queen's University Belfast
United Kingdom
x.cao@qub.ac.uk

Gao Cong
Nanyang Technological University
Singapore
gaocong@ntu.edu.sg

Abstract

As an important type of spatial keyword query, the m-closest keywords ($m \mathrm{CK}$) query finds a group of objects such that they cover all query keywords and have the smallest diameter, which is defined as the largest distance between any pair of objects in the group. The query is useful in many applications such as detecting locations of web resources. However, the existing work does not study the intractability of this problem and only provides exact algorithms, which are computationally expensive.

In this paper, we prove that the problem of answering $m \mathrm{CK}$ queries is NP-hard. We first devise a greedy algorithm that has an approximation ratio of 2 . Then, we observe that an m CK query can be approximately answered by finding the circle with the smallest diameter that encloses a group of objects together covering all query keywords. We prove that the group enclosed in the circle can answer the m CK query with an approximation ratio of $\frac{2}{\sqrt{3}}$. Based on this, we develop an algorithm for finding such a circle exactly, which has a high time complexity. To improve efficiency, we propose another two algorithms that find such a circle approximately, with a ratio of $\left(\frac{2}{\sqrt{3}}+\epsilon\right)$. Finally, we propose an exact algorithm that utilizes the group found by the $\left(\frac{2}{\sqrt{3}}+\epsilon\right)$-approximation algorithm to obtain the optimal group. We conduct extensive experiments using real-life datasets. The experimental results offer insights into both efficiency and accuracy of the proposed approximation algorithms, and the results also demonstrate that our exact algorithm outperforms the best known algorithm by an order of magnitude.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications-Spatial databases and GIS

Keywords

Spatial keyword query; Geo-textual objects

[^0]
1. INTRODUCTION

With the proliferation of GPS-equipped mobile devices, massive amounts of geo-textual objects are becoming available on the web that each possess both a geographical location and a textual description. For example, such geo-textual objects include points of interest (POIs) associated with texts, such as tourist attractions, hotels, restaurants, businesses, entertainment services, etc. Other example geo-textual objects include geo-tagged micro-blogs (e.g., Tweets), photos with both tags and geo-locations in social photo sharing websites (e.g., Flickr), and check-in information on places in location-based social networks (e.g., FourSquare).

The availability of substantial amount of geo-textual objects gives prominence to the spatial keyword queries that target these objects, which have been studied extensively in recent years $[3,5,7,9,20$, 21,23]. Typically, a spatial keyword query finds the objects that best match the arguments in the query exploiting both locations and textual descriptions. Such queries are widely used in many services and applications, such as online Map services, travel itinerary planning, etc.

As an important type of the spatial keyword query, the m-closest keywords ($m \mathrm{CK}$) query [21,22] is defined for finding a set of closest keywords in the geo-textual object database. Specifically, let \mathcal{O} be a set of geo-textual objects, and each object $o \in \mathcal{O}$ has a location denoted by $o . \lambda$ and a textual description $o . \psi$. The m CK query q contains m keywords, and it finds a group of objects G such that they cover all the query keywords (i.e., $q \subseteq \bigcup_{o \in G} o . \psi$) and such that the diameter of this group, denoted by $\delta(G)$, is minimized. The diameter of a group is defined as the maximum distance between any pair of objects in the group.

Figure 1: Example of the $m \mathbf{C K}$ query
The m CK query has many applications as shown in the proposals [21,22]. For example, it can be used in detecting geographic locations of web resources such as documents or photos. Given a document or a photo with some tags, we can issue an m CK query using these tags. After a group of objects covering all tags that have the smallest diameter is found, the area where these objects locate is very likely to be the location of the document or the photo. It has been shown $[21,22]$ that this approach can address the challenge faced by the traditional location detection techniques when the tags of documents or photos do not contain gazetteer terms.

The $m \mathrm{CK}$ query also has potential applications for location-based service providers [22]. One example application is "fans of Apple products can submit 'Apple store subway' to locate a retailer store near the subway for convenient purchase of the products in New York [22]." As another example, consider a tourist who is planning for a trip to Kyoto. She wishes to explore an area where the following attractions are within walking distance (i.e., close to one another): shrine, shop, restaurant, and hotel. That is, she is seeking a location to stay and do sightseeing and shopping on foot. This can be formulated as an m CK query. As shown in Figure 1, we can perform search on objects within the area of Kyoto, and the group enclosed in the circle is returned to meet the tourist's requirements.

Exact algorithms are proposed in the studies $[21,22]$ that run exponentially with the number of objects relevant to the query, and thus they are computationally prohibitive when the number of relevant objects is large. For example, in our experiments, the best known algorithm [22] took almost 1 hour to answer a query containing 8 keywords on a dataset with 1 million objects. Moreover, the hardness of the problem is still unknown.

In this paper, we establish that the problem of exactly answering the $m \mathrm{CK}$ query is NP-hard, which can be proven by a reduction from the 3-SAT problem. The intractability result motivates us to design approximation algorithms for efficiently processing the m CK query. We first develop a greedy approach that has an approximation ratio of 2 . We call this algorithm the Greedy Keywords Group algorithm, denoted by GKG. Utilizing the result returned by GKG, we propose three non-trivial approximation algorithms that all have better performance guarantee than $G K G$. Based on one of them, we further develop an efficient exact algorithm.

The three approximation algorithms answer the $m \mathrm{CK}$ query by finding the circle with the smallest diameter that encloses a group of objects together covering all query keywords. We call such a circle the "smallest keywords enclosing circle," and given a query q, we denote the circle by SKEC_{q}. We prove that the group in SKEC_{q} can answer the m CK query with an approximation ratio of $\frac{2}{\sqrt{3}}$. Although finding SKEC_{q} is solvable in polynomial-time, it is still an open problem to find SKEC_{q} efficiently, which is challenging because we know neither its radius nor its center.

We first develop an approach to finding SKEC_{q} exactly. We denote the set of objects that contain at least one query keyword by \mathcal{O}^{\prime}. This algorithm is based on a lemma we establish: there must exist either three or two objects in \mathcal{O}^{\prime} on the boundary of SKEC_{q} and they determine SKEC_{q}. Unfortunately, this method has a high time complexity $\left(\left|\mathcal{O}^{\prime}\right|^{4}\right.$ in the worst case $)$. We call this method the Smallest Keywords Enclosing Circle (denoted by SKEC, with a bit abuse of notation). This method is impractical when $\left|\mathcal{O}^{\prime}\right|$ is large.

For better efficiency, we propose to find SKEC_{q} approximately. First, we develop an algorithm that performs search on each object o in \mathcal{O}^{\prime} one by one. We call this method the Approximate Smallest Keywords Enclosing Circle (denoted by SKECa) algorithm. We prove that the group enclosed in the circle found by SKECa can answer the m CK query with an approximation ratio of $\left(\frac{2}{\sqrt{3}}+\epsilon\right)$ (ϵ is an arbitrarily small positive value). To further improve efficiency, we devise techniques to perform the search on all objects in \mathcal{O}^{\prime} together, instead of on each of them separately. This algorithm finds the same circle as found by SKECa. We denote this enhanced algorithm by SKECa+. Both algorithms have better time complexity than that of SKEC.

Finally, based on SKECa+, we devise an exact algorithm for the $m \mathrm{CK}$ query. Since answering $m \mathrm{CK}$ queries is NP-hard, it is challenging to devise an efficient exact algorithm-an exhaustive search on the object space cannot be avoided. We prove that the
diameter of the circle that encloses the optimal group cannot exceed $\frac{2}{\sqrt{3}}$ times the diameter of the group found in SKECa+. Thus, we do an exhaustive search around each object o in \mathcal{O}^{\prime}, considering only objects in \mathcal{O}^{\prime} whose distances to o are smaller than $\frac{2}{\sqrt{3}}$ times the diameter of group G returned by SKECa+. We denote this method by EXACT. The group G found by SKECa+ is able to greatly reduce the search space of EXACT.

In summary, the contributions of this paper are twofold. First, we prove that the problem of answering $m \mathrm{CK}$ queries is NP-hard. We observe and prove that an $m \mathrm{CK}$ query q can be answered by SKEC_{q} approximately with a performance guarantee. Based on this, we present novel approximation algorithms, SKEC, SKECa, and SKECa+, all with provable performance bounds for answering the $m \mathbf{C K}$ query. We also design an exact approach based on SKECa+ with the worst case time complexity $O\left(\left|\mathcal{O}^{\prime}\right| n^{|q|-1}\right)$, where n is the number of objects in a region around an object, which can be bounded by the result of SKECa+, and in general $n \ll \mathcal{O}^{\prime}$. Its complexity is better than that of the best known algorithm [22], which is $O\left(\left|\mathcal{O}^{\prime}\right|^{|q|}\right)$. Second, we conduct extensive experiments on real-life datasets. The experimental results demonstrate that the proposed approximation algorithms offer scalability and excellent efficiency and accuracy and that the exact algorithm outperforms the best known algorithm for answering $m \mathrm{CK}$ [22] by orders of magnitude.

2. PROBLEM AND BACKGROUND

2.1 Problem Statement

Let \mathcal{O} be a database consisting of a set of geo-textual objects. Each object $o \in \mathcal{O}$ is associated with a location $o . \lambda$ and a set of keywords $o . \psi$ describing the object (e.g., the menu of restaurants).
Definition 1: Diameter of a group: Given a group of objects G, its diameter is defined as the maximum Euclidean distance between any pair of objects in G, denoted by $\delta(G)$. That is, $\delta(G)=$ $\max _{o_{i}, o_{j} \in G} \operatorname{Dist}\left(o_{i}, o_{j}\right)$, where $\operatorname{Dist}\left(o_{i}, o_{j}\right)$ computes the Euclidean distance between o_{i} and o_{j}.
Definition 2: Problem definition [21,22]: An m-closest keywords ($m \mathrm{CK}$) query q contains m keywords $\left\{t_{q_{1}}, t_{q_{2}}, \ldots, t_{q_{m}}\right\}$, and it finds a group of objects $G \subseteq \mathcal{O}$, each containing at least one query keyword, such that $\cup_{o \in G} o . \bar{\psi} \supseteq q$ and such that $\delta(G)$ is minimized.
Definition 3: Feasible group: Given an $m \mathrm{CK}$ query q, if a group of objects can cover all keywords in q, we call such a group a "feasible group" or a "feasible solution".

We establish the hardness of answering the $m \mathrm{CK}$ query by the following theorem.
Theorem 1: The problem of answering $m \mathrm{CK}$ queries is NP-hard.
Proof. See Appendix A

2.2 Existing Solutions for m CK Queries

bR*-tree Based Method: In the work [21], Zhang et al. propose a hybrid index structure that combines the R^{*}-tree and bitmap, named bR^{*}-tree. Each R^{*}-tree node is augmented with a bitmap indicating the keywords contained in the objects rooted at this node. Based on the bR*-tree, an exact method is proposed to answer the m CK query. The algorithm adopts an exhaustive search enhanced with several pruning strategies. The search starts from the root node, and is performed in a top-down manner. In each level of the tree, all the candidate combinations of nodes (each combination can cover all query keywords) are generated. For each such combination of nodes, all combinations of their child nodes that cover all query keywords are generated. This process is repeated
until the leaf node level is reached, and then all possible groups are enumerated and the best one is returned as the result.
Virtual bR*-tree Based Method: In the subsequent work [22], an improved version of the $b R^{*}$-tree called virtual $b R^{*}$-tree is proposed. During query processing, the relevant objects and R*-tree nodes are read from the inverted file, and a virtual bR^{*}-tree is built using these relevant objects and nodes in a bottom-up way. The query is then processed using the algorithm proposed in the work [21] based on the virtual bR^{*}-tree. Compared to the original $\mathrm{bR} *$-tree, the size of the tree is significantly reduced. The experimental results show that this solution is much more efficient than that proposed in the earlier work [21]. Hence, we use the virtual $\mathrm{bR} *$-tree based method as the baseline, denoted by VirbR.
Spatial group keyword query: Cao et al. [2] study the spatial group keyword (SGK) query. Such a query Q has both a location $Q . \lambda$ and a set of query keywords $Q . \psi$. Given a database of geotextual objects \mathcal{O}, it retrieves a set of objects G, such that $\cup_{o \in G} o . \psi$ $\supseteq Q . \psi$, and the cost of G w.r.t. Q is minimized. The cost function takes into account both the distance of the group to the query and the inter-object distance. That is, the returned group is close to the query location, and the group also has a small diameter. When considering only the diameter of the group and ignoring the query location, such a query is equivalent to the m CK query. The pruning methods using location $Q . \lambda$ become invalid in the algorithm proposed for the SGK query, which is reduced to the bR*-tree based algorithm [21]. Thus it is not compared in our experiments.

Long et al. [16] propose algorithms for processing the SGK query, but the algorithms cannot handle the case when considering only the inter-object distance, and thus they cannot be used to answer the m CK query. They also studied a variant of the SGK query, where the cost function of a group G is defined as $\max _{o_{1}, o_{2} \in\{G \cup Q\} \text { (Dist }}$ $\left.\left(o_{1}, o_{2}\right)\right)$, called Dia-CoSKQ. That is, the query location is also considered when computing the diameter of the group. They propose both exact and approximation algorithms for this query. We adapt the two algorithms to answer the m CK query. Give an $m \mathrm{CK}$ query q, we select the most infrequent keyword $t_{i n f}$, and on each object o_{i} containing $t_{i n f}$, we issue a Dia-CoSKQ query with o_{i} as the query location and $q \backslash o_{i} . \psi$ as the query keywords, and we invoke the algorithm (either exact or approximate) [16] to answer the query. After all objects containing $t_{i n f}$ are processed, the group with the best cost is used as the result of the m CK query. The reason for choosing the most infrequent keyword $t_{i n f}$ is to minimize the number of times for issuing the Dia-CoSKQ query. The two algorithms are denoted by ASGK (adapted SGK exact) and ASGKa (adapted SGK approximation), respectively. We compare ASGK and $A S G K a$ with our proposed algorithms in the experiments, and they both have poor performance. The result shows that the adaptation is not suitable for processing the $m \mathrm{CK}$ query.

3. ALGORITHM GKG

We develop a 2-approximation algorithm as a baseline for answering the $m \mathrm{CK}$ query. We call it the Greedy Keyword Group (GKG) algorithm. The algorithm is described as follows. Given a query $q=\left\{t_{q_{1}}, t_{q_{2}}, \ldots, t_{q_{m}}\right\}$, we first find the most infrequent keyword $t_{\text {inf }}$ among the keywords in q based on their frequencies in dataset \mathcal{O}. Then, around each object o containing $t_{\text {inf }}$, for each keyword $t \in q \backslash o . \psi$ we find the nearest object containing t. These objects and o form a feasible group, and we denote this group by G_{o}. After all the objects containing $t_{i n f}$ are processed, we select the group that has the smallest diameter to answer the query approximately. We find the most infrequent keyword $t_{i n f}$ because this can reduce the number of subsequent operations for finding the nearest object. In the algorithm, we utilize the virtual bR*-tree in-
dexing structure [22] to find the nearest object containing a term t. The reason for using the virtual bR^{*}-tree is that we use the same index for all methods as the VirbR algorithm [22] for a fair comparison of different algorithms. Alternatively, we can also use other geo-textual indexes (such as IR-tree [7]). The algorithm details are presented in Appendix B.
Approximation ratio and Complexity. We proceed to prove that $G K G$ is within an approximation factor of 2 . We denote the group returned by $G K G$ by $G_{g k g}$, and denote the optimal group for the query by $G_{o p t}$.
Theorem 2: $\delta\left(G_{g k g}\right) \leq 2 \cdot \delta\left(G_{o p t}\right)$.
Proof. Let o_{i} to be the object containing $t_{\text {inf }}$ in $G_{\text {opt }}$, and we denote the feasible group containing o_{i} by $G_{o_{i}}$. We know that $\delta\left(G_{g k g}\right) \leq \delta\left(G_{o_{i}}\right)$ according to the algorithm. We denote by o_{f} the object that is the furthest to o_{i} in $G_{o_{i}}$.

On one hand, because all objects in $G_{o_{i}}$ fall in the circle with o_{i} as center and $\operatorname{Dist}\left(o_{i}, o_{f}\right)$ as radius, $\delta\left(G_{o_{i}}\right)$ must be no larger than the diameter of the circle, i.e., $2 \operatorname{Dist}\left(o_{i}, o_{f}\right)$. On the other hand, o_{f} must cover a keyword t_{f} that is not covered by other objects in $G_{o_{i}}$, and it is the nearest object to o_{i} containing t_{f}. Hence, in $G_{o p t}$, the object containing t_{f} must be no closer to o_{i} than o_{f}. We thus know that $\delta\left(G_{o p t}\right) \geq \operatorname{Dist}\left(o_{i}, o_{f}\right)$.

Hence, $\delta\left(G_{g k g}\right) \leq \delta\left(G_{o_{i}}\right) \leq 2 \operatorname{Dist}\left(o_{i}, o_{f}\right) \leq 2 \delta\left(G_{o p t}\right)$.
In $G K G$, each object containing $t_{i n f}$ is considered to be in the candidate group, and we denote the set of such objects as $\mathcal{O}_{t_{\text {inf }}}$. For each object $o \in \mathcal{O}_{t_{\text {inf }}}$, we find at most $m-1$ other objects together with o to form a feasible group. If we assume finding the nearest object containing a given keyword costs time d, the time complexity of $G K G$ is $\mathrm{O}\left(m\left|\mathcal{O}_{t_{i n f}}\right| d\right)$, where d depends on the index structure in place.

4. SKEC-BASED ALGORITHMS

To achieve better accuracy, we propose several novel algorithms with much smaller approximation ratios, which answer the $m \mathrm{CK}$ query by finding a circle with the smallest diameter that encloses a group of objects covering all query keywords. We call such a circle the "smallest keywords enclosing circle" w.r.t. the given query q, denoted by SKEC_{q}. We prove that the group enclosed in the circle SKEC_{q} can answer q with a ratio of $\frac{2}{\sqrt{3}}$, which is very close to 1 .

However, finding SKEC_{q} efficiently remains an open problem, which is challenging because neither its radius nor its center is known, although it is solvable in polynomial-time. We first develop an algorithm for finding SKEC_{q} exactly and it can answer m CK query q with a ratio of $\frac{2}{\sqrt{3}}$. We denote this method by SKEC. Algorithm SKEC has a high time complexity. To achieve better efficiency, we propose to find SKEC_{q} approximately, and design two algorithms SKECa and SKECa+, both of which are able to answer the $m \mathrm{CK}$ query with a ratio of $\left(\frac{2}{\sqrt{3}}+\epsilon\right)$, where ϵ is an arbitrarily small positive value.

We next introduce several definitions and theorems in Section 4.1, which lay the foundation of our algorithms. We detail SKEC, SKECa, and SKECa+ in Sections 4.2, 4.3, and 4.4, respectively.

4.1 Minimum Covering Circle and Keywords Enclosing Circle

Definition 4: Minimum Covering Circle. Given a set of geotextual objects G, the Minimum Covering Circle of G is the circle that encloses them with the smallest diameter, denoted by MCC_{G}.

The problem of finding the minimum covering circle for a given set of objects has been well studied [10,11,17]. Note that the diameter of the circle that encloses a group is different from the diameter

Figure 2: Example of two diameters
of the group. We denote the diameter of a $\operatorname{circle} \mathcal{C}$ by $\emptyset(\mathcal{C})$, and we denote the diameter of a group G by $\delta(G)$. Given a group of objects G, we show that $\delta(G) \neq \varnothing\left(\mathrm{MCC}_{G}\right)$ in Figure 2. Both groups G_{1} and G_{2} cover keywords $\left\{t_{1}, t_{2}, t_{3}\right\}$. In group G_{1}, the two diameters are the same. However, in group G_{2}, the diameter of G_{2} and the diameter of the minimum covering circle of G_{2} are different.

Although the diameter of the circle that encloses a group and the diameter of the group can be different, we have the following theorems to show their relationship.
Theorem 3: [11] Given a set of objects G, its smallest object enclosing circle can be determined by at most three points in G which lie on the boundary of the circle. If it is determined by only two points, then the line segment connecting those two points must be a diameter of the circle. If it is determined by three points, then the triangle consisting of those three points is not obtuse.
Theorem 4: Given a set of objects G and its minimum covering circle MCC_{G}, we have $\frac{\sqrt{3}}{2} \emptyset\left(\mathrm{MCC}_{G}\right) \leq \delta(G) \leq \emptyset\left(\mathrm{MCC}_{G}\right)$.

Proof. See Appendix C
Definition 5: Keywords Enclosing Circle. Given a database of geo-textual objects \mathcal{O} and a set of keywords ψ, the Keywords Enclosing Circle w.r.t. $\psi\left(\right.$ denoted by $\left.\mathrm{KEC}_{\psi}\right)$ is a circle that encloses a group of objects covering all the given keywords in ψ. We call the one with the smallest diameter the Smallest Keywords Enclosing Circle (denoted by SKEC_{ψ})

Figure 3: Examples of enclosing circles w.r.t. $\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$.
Example 1: As shown in Figure 3, given a set of keywords $q=$ $\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$, the larger circle is a keyword enclosing circle, and the smaller circle with dashed line is the smallest keyword enclosing circle w.r.t. q.

From Figure 2, it can also be observed that given an $m \mathrm{CK}$ query q, the group enclosed by SKEC_{q} is not necessary the optimal group of q, i.e., $G_{\text {opt }}$. Consider the objects as shown in Figure 2, given a query $q=\left\{t_{1}, t_{2}, t_{3}\right\}, G_{2}$ is the optimal group rather than G_{1} because $\delta\left(G_{2}\right)<\delta\left(G_{1}\right)$. However, the minimum covering circle of G_{1} is SKEC_{q}, because $\varnothing\left(\mathrm{MCC}_{G_{2}}\right)>\emptyset\left(\mathrm{MCC}_{G_{1}}\right)$.

Fortunately, we can establish the relationship between the diameter of $G_{\text {opt }}$ and the diameter of the group enclosed in SKEC_{q}, denoted by $G_{\text {skec }}$ (i.e., SKEC_{q} is $\mathrm{MCC}_{G_{\text {skec }}}$), as follows.
Theorem 5: $\delta\left(G_{\text {skec }}\right) \leq \frac{2}{\sqrt{3}} \delta\left(G_{\text {opt }}\right)$.

Proof. According to Theorem 4, $\varnothing\left(\mathrm{MCC}_{G_{o p t}}\right) \leq \frac{2}{\sqrt{3}} \delta\left(G_{o p t}\right)$, and $\delta\left(G_{\text {skec }}\right) \leq \varnothing\left(\mathrm{SKEC}_{q}\right)$. Since SKEC_{q} has the smallest diameter, we can obtain $\delta\left(G_{\text {skec }}\right) \leq \emptyset\left(\mathrm{SKEC}_{q}\right) \leq \emptyset\left(\mathrm{MCC}_{G_{\text {opt }}}\right) \leq$ $\frac{2}{\sqrt{3}} \delta\left(G_{o p t}\right)$.
Theorem 5 shows that if we can find the smallest keywords enclosing circle SKEC_{q} for a given $m \mathrm{CK}$ query q, the group of objects $G_{\text {skec }}$ enclosed in SKEC_{q} can approximately answer query q with a ratio of $2 / \sqrt{3}(\approx 1.1547)$. This lays the foundation of our proposed algorithms that find SKEC_{q} to approximately answer query q, to be presented in the next three subsections.

4.2 Algorithm SKEC

The SKEC algorithm finds the smallest keywords enclosing circle SKEC_{q} exactly for a given query q. The algorithm has a high time complexity (to be analyzed later). It is based on the following corollary, which follows Theorem 3 and the definition of SKEC_{q}.
Corollary 1: There must exist either three or two objects on the boundary of SKEC_{q}, which determine the circle SKEC_{q}. If two objects determine SKEC_{q}, the line segment connecting them is the diameter of SKEC_{q}.

We denote by \mathcal{O}^{\prime} the set of objects that contain at least one query keyword. According to the corollary, we can check every combination of two and three objects in \mathcal{O}^{\prime} to find whether the circle determined by the combination encloses a group covering all query keywords and has the smallest diameter. The circle found finally must be SKEC_{q}. We introduce several pruning strategies to reduce the number of checking in SKEC. Before presenting the details of $S K E C$, we introduce the following definition.
Definition 6: Object-across Keywords Enclosing Circle. Given a set of keywords q and an object o, we call a keywords enclosing circle passing through o the o-across Keywords Enclosing Circle (denoted by KEC_{q}^{o}). The o-across keywords enclosing circle with the smallest diameter is called the o-across Smallest Keywords Enclosing Circle (denoted by SKEC_{q}^{o}).
Example 2: As shown in Figure 3, the larger circle is an o_{1}-across keywords enclosing circle, and the smaller circle is the o_{1}-across smallest keywords enclosing circle w.r.t. $q=\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$.

Given a query q, there must exist an object containing at least one query keyword on the boundary of SKEC_{q}. Hence, if we find the object-across smallest keywords enclosing circle (SKEC_{q}^{o}) on each object o in \mathcal{O}^{\prime} (these objects are obtained using the virtual bR^{*}-tree index), the one with the smallest diameter must be SKEC_{q}. That is, $\mathrm{SKEC}_{q}=\min _{o \in \mathcal{O}^{\prime}} \mathrm{SKEC}_{q}^{o}$.

The algorithm is shown in Algorithm 1. We first obtain a group $G_{g k g}$ using the $G K G$ algorithm, and the diameter of its minimum covering circle $\mathrm{MCC}_{G_{g k g}}$ serves as the initial upper bound of the diameter of SKEC_{q}. We denote the current best checked circle by $C_{c u r}$, and $C_{c u r}$ is initialized as $\mathrm{MCC}_{G_{g k g}}$ (lines 1-2). For each object o in \mathcal{O}^{\prime}, if it covers all query keywords, we return this object (line 5). Otherwise, we find the smallest o-across keyword enclosing circle, and update $C_{c u r}$ if it has a smaller diameter (line 6). Finally, we return the objects in $C_{c u r}$ to answer q (lines 7-8).
Procedure findOSKEC(). We next present how to find SKEC_{q}^{o} around each object o in \mathcal{O}^{\prime}. For finding SKEC_{q}^{o}, the search space comprises only objects whose distance to o is smaller than $\emptyset\left(C_{c u r}\right)$. This is because for any object o_{f} with $\operatorname{Dist}\left(o, o_{f}\right) \geq \phi\left(C_{c u r}\right)$, the circle passing by o_{f} and o must have a diameter no smaller than $\operatorname{Dist}\left(o, o_{f}\right)$, and thus is worse than $C_{c u r}$. If these objects together cannot cover all query keywords, o does not need to be processed.

Recall that SKEC_{q} is determined by either three or two objects in \mathcal{O}^{\prime}. We aim at searching whether the circle determined by object

```
Algorithm 1: \(\operatorname{SKEC}(q)\)
    \(G_{g k g} \leftarrow G K G(q) ; \quad / /\) invoke GKG
    \(C_{c u r} \leftarrow \mathrm{MCC}_{G_{g k g}} ;\)
    \(\mathcal{O}^{\prime} \leftarrow\) objects containing at least one keyword in \(q\);
    foreach object \(o \in \mathcal{O}^{\prime}\) do
        if \(o . \psi=q\) then return \(\{o\}\);
        \(C_{c u r} \leftarrow \operatorname{findOSKEC}\left(o, C_{c u r}\right)\);
    \(G_{\text {skec }} \leftarrow\) objects in \(C_{\text {cur }}\);
    return \(G_{\text {skec }}\);
```

o together with a second object o_{j}, and the circle determined by o, o_{j} and a third object o_{m} is SKEC_{q}. For each object o_{j} in the search space of o, we first consider the case when SKEC_{q} is determined by two objects. We check all the objects in the circle determined by the pair, and update $C_{c u r}$ if the circle covers all query keywords. We next consider the case when SKEC_{q} is determined by three objects. For each object o_{m} in the search space of o, we check if the circle determined by o, o_{j}, and o_{m} can cover all query keywords and has the smallest diameter among all checked circles. The diameter of the circle can be computed using the laws of sins and cosines.

The second object o_{j} is processed in ascending order of their distances to o. This assures that when we reach an object o_{j} with distance to o larger than $\emptyset\left(C_{c u r}\right)$, we can terminate the search around o immediately, because a circle passing by any further object and o must have a diameter larger than $\emptyset\left(C_{c u r}\right)$. After o and o_{j} are fixed, an object o_{m} is considered as the third object only if $\operatorname{Dist}\left(o_{m}, o\right)<\operatorname{Dist}\left(o_{j}, o\right)$ and $\operatorname{Dist}\left(o_{m}, o_{j}\right)<\emptyset\left(C_{c u r}\right)$. The first constraint is because further objects will be processed in subsequent steps, where they are used as the second object. The second constraint is because further objects, together with o and o_{j}, cannot determine a better circle than $C_{\text {cur }}$.

After all objects in \mathcal{O}^{\prime} are processed, it is assured that all objectacross keywords enclosing circles are found. We use the best one to answer the given m CK query. The pseudo code is given in Procedure findOSKEC in Appendix D.
Approximation ratio and Complexity. Algorithm SKEC finds SKEC_{q} exactly and has an approximation ratio of $2 / \sqrt{3}$ according to Theorem 5. SKEC utilizes the current best circle to prune the search space when finding SKEC_{q}^{o}. Assuming that there are n objects in the search space around an object in the worst case, the number of checks in procedure findOSKEC () is $\mathrm{O}\left(n^{2}\right)$. We also need to read the objects within a circle, which costs at most $\mathrm{O}(n)$. Hence, the time complexity is $\mathrm{O}\left(\left|\mathcal{O}^{\prime}\right| n^{3}\right)$. The high time complexity makes SKEC impractical especially when n is large (in the worst case $n=\left|\mathcal{O}^{\prime}\right|$).

Considering the high complexity of SKEC for finding SKEC_{q} exactly, we next propose two algorithms for finding SKEC_{q} approximately with much better efficiency.

4.3 Algorithm SKECa

In SKEC, on each relevant object o we find the o-across smallest keywords enclosing circle (SKEC_{q}^{o}) exactly in procedure findOSKEC(). In the SKECa algorithm we propose to find SKEC_{q}^{o} approximately to gain better efficiency.

4.3.1 Finding SKEC_{q}^{o} Approximately

The idea of this algorithm is based on the following property of keywords enclosing circles.
Property 1: Given a set of keywords ψ and an object o, if there exists no o-across keywords enclosing circle (KEC_{q}^{o}) with diameter D, then no KEC_{q}^{o} exists whose diameter is smaller than D.

Proof. This can be proven by contradiction. If there exists an o-across keywords enclosing circle \mathcal{C} with diameter D^{\prime} smaller than D, at object o we can draw a circumscribed circle $\mathcal{C}_{\text {circ }}$ of \mathcal{C} with diameter D, and it is obvious that $\mathcal{C}_{\text {circ }}$ is also an o-across keywords enclosing circle, leading to a contradiction.

The property inspires us to use binary search to find the diameter and the position of SKEC_{q}^{o}. Given a value D, if we can find a KEC_{q}^{o} on object o with diameter D, we know that D must be an upper bound of $\varnothing\left(\mathrm{SKEC}_{q}^{o}\right)$, and we will try smaller D in the subsequent search. Otherwise, if using value D we can find no KEC_{q}^{o} on object o, D must be a lower bound of $\varnothing\left(\mathrm{SKEC}_{q}^{o}\right)$ (Property 1), and we need to enlarge D in the subsequent search. We repeat this process until the gap between the upper bound and the lower bound is smaller than a certain threshold α.

Parameter α is the error tolerance of the binary search, and we present how to set this parameter smartly based on the result of algorithm $G K G$ in Section 4.3.3. As to be shown in Section 4.3.3, by setting a query-dependent value for α based on the result of algorithm $G K G$, we are able to guarantee the approximation ratio of $\left(\frac{2}{\sqrt{3}}+\epsilon\right)$ for SKECa, where ϵ is an arbitrarily small value.

We set the initial upper bound of $\varnothing\left(\mathrm{SKEC}_{q}^{o}\right)$ by the diameter of the current best circle, because we aim to find a circle with smaller diameter than the current one. The lower bound can be simply set to 0 . However, in order to accelerate the binary search, we use the following lemma to improve the lower bound of $\varnothing\left(\mathrm{SKEC}_{q}^{o}\right)$.
Lemma 1: $\varnothing\left(\mathrm{SKEC}_{q}^{o}\right) \geq \delta\left(G_{g k g}\right) / 2$, where $G_{g k g}$ is the group found by algorithm GKG.

Proof. We denote the group enclosed in $\operatorname{SKEC}_{q}^{o}$ by G_{q}. We obtain $\emptyset\left(\mathrm{SKEC}_{q}^{o}\right) \geq \delta\left(G_{q}\right)($ Theorem 4$) \geq \delta\left(G_{o p t}\right) \geq \delta\left(G_{g k g}\right) / 2$ (Theorem 2).

```
Procedure findAppOSKEC \(\left(o, \delta\left(G_{g k g}\right), C_{c u r}, \alpha\right)\)
    search \(U B \leftarrow \emptyset\left(C_{\text {cur }}\right)\);
    oskec \(\leftarrow\) circleScan \((o\), searchU B);
    if oskec is null then return null ;
    searchLB \(\leftarrow \delta\left(G_{g k g}\right) / 2\);
    while \(\operatorname{search} U B-\operatorname{search} L B>\alpha\) do
        diam \(\leftarrow(\) search \(U B+\operatorname{searchLB}) / 2\);
        \(\mathcal{C} \leftarrow\) circleScan \((o\), diam \()\);
        if \(\mathcal{C} \neq \emptyset\) then
            search \(U B \leftarrow\) diam;
            oskec \(\leftarrow \mathcal{C}\);
        else searchLB \(\leftarrow\) diam;
    return oskec;
```

As described in Procedure findAppOSKEC(), we first set the upper bound of $\varnothing\left(\operatorname{SKEC}_{q}^{o}\right)$ by the diameter of the current best circle (line 1). Then we use search $U B$ to search for an o-across keywords enclosing circle by invoking the function circleScan() (to be described in Section 4.3.2) (line 2). If no such circle exists, we do not need to search on o because $\emptyset\left(\operatorname{SKEC}_{q}^{o}\right)$ must be larger than the diameter of the current best circle according to Property 1 (line 3). We set the lower bound of $\varnothing\left(\mathrm{SKEC}_{q}^{o}\right)$ according to Lemma 1 (line 4). The binary search stops when the gap between search $U B$ and searchLB is smaller than α (lines 5-11).

By replacing the procedure findOSKEC() with findAppOSKEC() in Algorithm 1, we obtain the SKECa algorithm. SKECa finds SKEC_{q} approximately, and the diameter of the circle found is smaller than $\varnothing\left(\mathrm{SKEC}_{q}\right)+\alpha$.

4.3.2 Procedure circleScan()

In each step of the binary search in the SKECa algorithm, we invoke Procedure circleScan() to check if there exists a KEC_{q}^{o} with
diameter D on a given object o. This procedure is a key operation of Algorithm SKECa, and is non-trivial.

The idea of finding a KEC_{q}^{o} with diameter D is as follows: If there exists such a circle, besides o there must exist another object falling on the boundary of this circle (we can always rotate the circle around o to assure this). Hence, from the objects whose distance to o is smaller than D, we randomly select one and make it on the boundary of the circle, and we can fix the position of this circle. Then, we rotate this circle from this position, and if at a certain position the objects inside this circle can cover all the query keywords, we know that a KEC_{q}^{o} with diameter D is found. If we have rotated the circle back to the beginning position but still cannot find a feasible group, we know that no KEC_{q}^{o} with diameter D exists. Figure 4 illustrates the sweeping area around an object o given D as the diameter, which is the circle with dashed lines.

Figure 4: Sweeping area
Figure 5: Computing two angles
We use the virtual bR^{*}-tree to read all objects in the sweeping area. Before the checking on an object o by rotating the circle, we first check whether all keywords can be covered by the objects in the sweeping area, and if not, there exists no KEC_{q}^{o} with diameter D and the checking on o is thus avoided.

Now we present how to efficiently rotate the circle to find a KEC_{q}^{o} with diameter D. We rotate the circle clockwise. Note that during the rotation, each object in the sweeping area falls on the boundary of the circle only twice. That is, each object is scanned outside-in or inside-out by the circle exactly once. We map the objects in the sweeping area around o to a polar coordinate system with o as the pole and the horizontal line pointing to the right as the polar axis. On each object o_{j} in the sweeping area, we compute two polar angles when o_{j} touches the boundary: 1) when o_{j} is entering the circle, we find the center point of the circle at the current position and we compute the polar angle of the center point, denoted by o_{j}-in; and 2) when o_{j} is exiting the circle, we compute the polar angle of the center point of the circle at the current position, denoted by o_{j}-out. Figure 5 shows an example of computing o_{j}-in and o_{j}-out in the polar coordinate system with o as the pole.

Next, after we compute the two polar angles for each object in the sweeping area, we sort all these angles in descending order and store them in \angle. Initially, we place the circle such that the center point of the circle has the polar angle equal to the largest angle in \angle. We check if the objects in this circle can cover all query keywords. If so, a KEC_{q}^{o} is found and we return the circle, and otherwise we record the keywords covered by these objects with their frequencies in a table $T a b$ and we start the clockwise rotation from the current position. When the circle is rotated to a position such that the center point of the circle has a polar angle equal to the next largest angle in \angle, we update table $T a b$ because the objects enclosed in the circle change. If the angle is an object inside-out angle, we remove from $T a b$ the keywords covered by the object to be rotated out of the circle. If the angle is an object outside-in angle, we update Tab by adding in the keywords covered by the object to be rotated in the circle. If Tab contains all query keywords we terminate the checking, and otherwise we repeat the above rotation process until
we find a KEC_{q}^{o} or all angles in \angle are reached. The pseudo code is given in Procedure circleScan.
Procedure circleScan(o, diam)
$\angle \leftarrow$ empty List;
Initialize $T a b$ by q;
$G \leftarrow \emptyset ;$
foreach object $o_{j} \in \mathcal{O}^{\prime}$ do
o_{j}-in $\leftarrow \operatorname{getInAngle}\left(o\right.$, diam, $\left.o_{j}\right)$;
o_{j}-out \leftarrow getOutAngle $\left(o\right.$, diam, $\left.o_{j}\right)$;
<.addTuple(o_{j}-out, out, o_{j});
if o_{j}-out $<o_{j}$-in then
$G \leftarrow G \cup o_{j} ; \quad / / o_{j}$ in the initial circle
$T a b$ add $o_{j} \cdot \psi ;$
else \angle.addTuple $\left(o_{j}-i n, i n, o_{j}\right)$;
if Tab is full then return G;
sort \angle by angle in ascending order;
foreach tuple (angle, type, o) in $\angle \mathbf{d o}$
if type $=$ in then
$G \leftarrow G \cup o ;$
Add $o . \psi$ to $T a b$;
if $T a b$ is full then return G;
else
$G \leftarrow G \backslash o ;$
Remove $o . \psi$ from Tab;
return $\emptyset ;$

Figure 6: Circle scan procedure w.r.t. query $\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$
Example 3: Figure 6 shows an example of the checking process. The outside-in polar angles are marked as blue lines and the insideout polar angles are marked as red lines. Assume that the rotation reaches angle o_{1}-out, and before that the keyword-frequency table $T a b$ is $\left\{t_{1}: 2, t_{2}: 1, t_{4}: 2\right\}$. Since o_{1}-out is an object inside-out angle, we remove the keywords covered by o_{1} and we obtain $T a b=\left\{t_{1}: 2\right.$, $\left.t_{2}: 1, t_{4}: 1\right\}$. The rotation stops at the next angle o_{2}-out, and we update $T a b$ as $\left\{t_{1}: 1, t_{2}: 1\right\}$. The next largest angle is $o_{4}-i n$, and we get $T a b=\left\{t_{1}: 1, t_{2}: 2, t_{3}: 1\right\}$. Since $T a b$ still cannot cover all query keywords, we continue the rotation and we reach $o_{5}-i n$ next. Tab is updated as $\left\{t_{1}: 1, t_{2}: 2, t_{3}: 1, t_{4}: 1\right\}$, and a KEC_{q}^{o} is found now and we stop the checking and return the result.

Suppose there are n objects in the sweeping area. The time complexity of sorting the polar angles is $O(n \log n)$. Each outside-in angle and inside-out angle is scanned once during the sweeping. At the initial position the text descriptions of all objects in the sweeping area are read, which has the complexity of $O(n)$, and each subsequent rotation only has complexity of $O(1)$. Hence, the rotation and checking together has complexity $O(n)$, and the total time complexity of this procedure is $O(n \log n)$.

4.3.3 Approximation ratio and Complexity

SKECa finds a circle under the error tolerance α. Let $G_{\text {skeca }}$ denote the group found by SKECa. That is, it is guaranteed that $\phi\left(\mathrm{MCC}_{G_{\text {skeca }}}\right) \leq \varnothing\left(\mathrm{SKEC}_{q}\right)+\alpha$. We propose an approach to setting a query-dependent threshold value for α such that we can assure an approximate ratio of $\left(\frac{2}{\sqrt{3}}+\epsilon\right)$ for SKECa, where ϵ is an arbitrarily small value. The idea is to utilize the result returned by
the 2-approximation algorithm $G K G$. Specifically, after we obtain a group $G_{g k g}$ by invoking $G K G$, we set $\alpha=\epsilon \delta\left(G_{g k g}\right) / 2$, and we have the following lemma.
Theorem 6: The SKECa algorithm has an approximation ratio of $\frac{2}{\sqrt{3}}+\epsilon$ by setting $\alpha=\epsilon \delta\left(G_{g k g}\right) / 2$.

Proof. See Appendix E
The time complexity is also affected by parameter ϵ. The binary search range $s r$ is $\emptyset\left(\mathrm{MCC}_{G_{g k g}}\right)-\delta\left(G_{g k g}\right) / 2 \leq\left(\frac{2}{\sqrt{3}}-\right.$ $\left.\frac{1}{2}\right) \delta\left(G_{g k g}\right)$. The binary search stops when the gap between the search upper and lower bounds is smaller than α. Hence, the binary search takes $O(\log (s r / \alpha))$ steps, and it can be computed that $s r / \alpha \leq\left(\frac{2}{\sqrt{3}}-\frac{1}{2}\right) \delta\left(G_{g k g}\right) /\left(\epsilon \delta\left(G_{g k g}\right) / 2\right)=\left(\frac{4}{\sqrt{3}}-1\right) / \epsilon$.

In the SKECa algorithm, in the worst case, the binary search would be performed on all objects in the dataset. Therefore, the time complexity in the worst case is $O\left(\left|\mathcal{O}^{\prime}\right| \log \frac{1}{\epsilon} n \log n\right)$, where $\left|\mathcal{O}^{\prime}\right|$ is the number of objects relevant to the query, $O\left(\log \frac{1}{\epsilon}\right)$ is the steps of binary search performed on an object, and $O(n \log n)$ is the complexity of one step where n is the number of objects in the sweeping area in the worst case. The circleScan() method is invoked only when the sweeping area covers all query keywords on an object. Thus, in practice, the query processing time is much better than analyzed.

4.4 Algorithm SKECa+

As analyzed in Section 4.3.2, the cost of checking whether there exists a KEC_{q}^{o} with diameter D is determined by the number of objects in the sweeping area which depends on the value of D. In the SKECa algorithm, the binary search is performed on each object, and the minimum diameter of the keywords enclosing circle obtained on processed objects is used as the upper bound in subsequent search on remaining objects. Hence, if on the early processed objects the circles found are large, the upper bound is loose for subsequent search and the checking cost is high.

To avoid this problem and improve efficiency, we propose to perform binary search on all objects in \mathcal{O}^{\prime} together, instead of on each of them separately. Specifically, we find the diameter and the position of SKEC_{q} directly using binary search, instead of first finding all object-across smallest keywords enclosing circles and then selecting the best one. We call the process enhanced binary search.

We set the range of the enhanced binary search as follows. Given a query q, if there exists an o-across keywords enclosing circle with diameter D on any object o in \mathcal{O}^{\prime}, D is an upper bound of $\emptyset\left(\mathrm{SKEC}_{q}^{o}\right)$, and obviously it is also an upper bound of $\emptyset\left(\mathrm{SKEC}_{q}\right)$. If on an object o there exists no o-across keywords enclosing circle with diameter D, D is a lower bound of $\varnothing\left(\operatorname{SKEC}_{q}^{o}\right)$; if D is a lower bound of $\emptyset\left(\mathrm{SKEC}_{q}^{o}\right)$ for every o in \mathcal{O}^{\prime}, D is a lower bound of $\phi\left(\mathrm{SKEC}_{q}\right)$. The enhanced algorithm is presented in Algorithm 3.

We obtain \mathcal{O}^{\prime} and set the upper and lower bounds as we do in Algorithm 1. It can be proven that $\delta\left(G_{g k g}\right) / 2$ is also a lower bound of SKEC_{q} by following the proof in Lemma 1. On each object o, we use array maxInvalidRange to record the largest diameter such that there exists no o-across keywords enclosing circle with diameter maxInvalidRange $[o]$ according to the previous checks. Initially, maxInvalidRange $[o]$ is set to 0 (line 7). The value is used to avoid unnecessary checking on an object o.

The enhanced binary search is applied on all objects together (lines 9-24). On each object o in \mathcal{O}^{\prime}, before we find SKEC_{q}^{o} with diameter diam, we first compare whether diam is less than the invalid diameter stored in maxInvalidRange to avoid unnecessary checking. We can safely discard o if diam is smaller than maxInvalidRange $[o]$ according to Property 1 (lines 12-13). If we can find a keywords enclosing circle KEC_{q}^{o} with diameter diam, we update the upper bound of SKEC_{q} and the current best circle,

```
Algorithm 2: SKECa+ \((q, \alpha)\)
\(G_{g k g} \leftarrow G K G(q) ; C_{c u r} \leftarrow \mathrm{MCC}_{G_{g k g}} ;\)
\(\mathcal{O}^{\prime} \leftarrow\) objects containing at least one keyword in \(q\);
search \(U B \leftarrow \emptyset\left(C_{c u r}\right)\);
search \(L B \leftarrow \delta\left(G_{g k g}\right) / 2\);
foreach object o in \(\mathcal{O}^{\prime}\) do
        if \(o . \psi=q\) then return \(\{o\}\);
        maxInvalidRange \([o] \leftarrow 0\);
    while \(\operatorname{search} U B-\operatorname{search} L B>\alpha\) do
        \(\operatorname{diam} \leftarrow(\) search \(U B+\operatorname{search} L B) / 2\);
        foundResult \(\leftarrow\) False;
        foreach \(o\) in \(\mathcal{O}^{\prime}\) do
            if diam < maxInvalidRange[o] then
                continue;
            oskec \(\leftarrow \operatorname{circleScan}(o\), diam \()\);
            if oskec \(\neq \emptyset\) then
                search \(U B \leftarrow\) diam;
                    \(C_{\text {cur }} \leftarrow\) oskec;
                    foundResult \(\leftarrow\) True;
                break;
            else
                if diam > maxInvalidRange[o] then
                    maxInvalidRange \([o] \leftarrow\) diam;
        if foundResult \(=\) False then
            search \(L B \leftarrow\) diam;
    \(G_{\text {skeca }} \leftarrow\) objects in \(C_{c u r}\);
    return \(G_{\text {skeca }}\);
```

and we terminate the checking using diam immediately (lines 1519). Otherwise, we update the maximum invalid diameter of o if it is smaller than diam, because no o-across keywords enclosing circle with diameter diam exists (lines 20-22). If on all objects we fail in finding the keywords enclosing circle with diameter diam, we increase the lower bound for subsequent search (lines 23-24).
Approximation ratio and Complexity. Since SKECa+ finds the same circle as found in SKECa, the result group is the same as that returned by SKECa, and thus this algorithm also has an approximation ratio of $\left(\frac{2}{\sqrt{3}}+\epsilon\right)$.

SKECa+ performs binary search on all objects relevant to the query together. The bounds for binary search are the same as those used in SKECa, and thus the steps of binary search is also $O\left(\log \frac{1}{\epsilon}\right)$. SKECa+ also invokes the procedure circleScan(), which has complexity $O(n \log n)$. In the worst case, the binary search is performed on all objects as well. Therefore, the worst case time complexity of SKECa+ is also $O\left(\left|\mathcal{O}^{\prime}\right| \log \frac{1}{\epsilon} n \log n\right)$. However, after we know a keywords enclosing circle with diameter diam exists on an object in SKECa+, we can immediately stop the search using diam and avoid the checking on the remaining objects. Therefore, it has much better efficiency in practice than does SKECa, which is to be shown in the experimental study in Section 6.

The number of objects n in the sweeping area w.r.t. an object depends on the query. If the query keywords are frequent and the optimal result has a large diameter, n would be large. We study the effect of both the frequencies of query keywords and the diameter of the optimal result on the efficiency of our algorithms in the experiments.

5. EXACT ALGORITHM

It is challenging to develop an efficient exact algorithm for m CK queries, as an exact algorithm cannot avoid an exhaustive search in the object space. The best known solution [22] performs exhaustive search on all objects that contain at least one query keyword, and thus the computational cost is high if such objects are large in number. In this section, we propose an exact algorithm, which
leverages the result of our approximation algorithm SKECa+ to greatly reduce the space of exhaustive search.

5.1 Algorithm Framework

If we know the smallest circle that encloses the optimal group $G_{\text {opt }}$, i.e., $\mathrm{MCC}_{G_{o p t}}$, we can do exhaustive search only on objects in $\mathrm{MCC}_{G_{o p t}}$ and the search space can be reduced significantly, compared to the search space of the best known algorithm [22]. However, we know neither the radius nor the center of $\mathrm{MCC}_{G_{o p t}}$. Note that the circle $\mathrm{MCC}_{G_{\text {opt }}}$ is different from the smallest keywords enclosing circle w.r.t. q, i.e., SKEC_{q}. For example, as shown in Figure 2, given a query $q=\left\{t_{1}, t_{2}, t_{3}\right\}, \mathrm{SKEC}_{q}$ is $\mathrm{MCC}_{G_{1}}$, but the optimal group G_{2} is enclosed in $\mathrm{MCC}_{G_{2}}$.

Although we do not know the exact size of $\mathrm{MCC}_{G_{o p t}}$, we prove that the diameter of $\mathrm{MCC}_{G_{\text {opt }}}$ can be bound by the diameter of SKEC_{q} as follows.
Lemma 2: $\phi\left(\mathrm{MCC}_{G_{\text {opt }}}\right) \leq \frac{2}{\sqrt{3}} \emptyset\left(\mathrm{SKEC}_{q}\right)$.
Proof. Denote the group enclosed in SKEC_{q} by $G_{s k e c}$. According to Theorem $4, \varnothing\left(\mathrm{MCC}_{G_{\text {opt }}}\right) \leq \frac{2}{\sqrt{3}} \delta\left(G_{\text {opt }}\right)$, and $\varnothing\left(\mathrm{SKEC}_{q}\right)$ $\geq \delta\left(G_{\text {skec }}\right)$. Because $G_{\text {opt }}$ has the smallest diameter, we have $\phi\left(\mathrm{MCC}_{G_{\text {opt }}}\right) \leq \frac{2}{\sqrt{3}} \delta\left(G_{\text {opt }}\right) \leq \frac{2}{\sqrt{3}} \delta\left(G_{\text {skec }}\right) \leq \frac{2}{\sqrt{3}} \phi\left(\mathrm{SKEC}_{q}\right)$.

With Lemma 2, we propose to utilize SKEC_{q} to reduce the exhaustive search space. Our basic idea is that, we find the circles that might be $\mathrm{MCC}_{G_{o p t}}$ utilizing SKEC_{q}. Within each such candidate circle, we perform an exhaustive search (with some pruning strategies) on the objects enclosed by it to find a group. After all candidate circles are found and checked, the best group found must be the optimal group. Note that we use SKECa+ to find approximate SKEC_{q}, rather than SKEC to find the exact SKEC_{q}, which is computationally expensive. The circle returned by SKECa+ has a diameter not exceeding $\emptyset\left(\mathrm{SKEC}_{q}\right)+\alpha$. Thus, $\emptyset\left(\mathrm{MCC}_{G_{\text {opt }}}\right)$ is bound by $\frac{2}{\sqrt{3}}$ times the diameter of the circle returned by SKECa+ as well.

We proceed to explain how to find the candidate circles that might be $\mathrm{MCC}_{G_{o p t}}$. Since $\mathrm{MCC}_{G_{o p t}}$ is the smallest circle that encloses the optimal group $G_{o p t}$, there must exist an object in $G_{o p t}$ on the boundary of $\mathrm{MCC}_{G_{\text {opt }}}$. The problem is that we do not know this object, which can be any object o containing at least one query keyword. To avoid finding candidate circles on each such object o, we establish the following lemma to filter out objects that cannot be on the boundary of $\mathrm{MCC}_{G_{\text {opt }}}$. We denote by $G_{\text {skeca }}$ the group found by SKECa+ and the smallest circle enclosing $G_{\text {skeca }}$ by $\mathrm{MCC}_{G_{\text {skeca }}}$.
Lemma 3: On an object o, if the diameter of SKEC_{q}^{o} is larger than $\frac{2}{\sqrt{3}}$ times the diameter of $\mathrm{MCC}_{G_{\text {skeca }}}$, o cannot be on the boundary of $\mathrm{MCC}_{G_{\text {opt }}}$.

Proof. If o is on the boundary of $\mathrm{MCC}_{G_{\text {opt }}}, \phi\left(\mathrm{SKEC}_{q}^{o}\right) \leq$ $\phi\left(\mathrm{MCC}_{G_{\text {opt }}}\right)$ (note that even though an object o is indeed the object on the boundary of $\mathrm{MCC}_{G_{\text {opt }}}, \mathrm{SKEC}_{q}^{o}$ may still not be $\left.\mathrm{MCC}_{G_{\text {opt }}}\right)$. Because $\phi\left(\mathrm{MCC}_{G_{o p t}}\right) \leq \frac{2}{\sqrt{3}} \phi\left(\mathrm{SKEC}_{q}\right)$ (according to Lemma 2), and $\phi\left(\mathrm{MCC}_{G_{\text {skeca }}}\right) \geq \varnothing\left(\mathrm{SKEC}_{q}\right)$ (because of the binary search), we have $\phi\left(\mathrm{SKEC}_{q}^{o}\right) \leq \frac{2}{\sqrt{3}} \phi\left(\mathrm{MCC}_{G_{\text {skeca }}}\right)$, leading to a contradiction.

With Lemma 3, we prune some objects from consideration for finding candidate circles as follows: Recall that in SKECa+, we use an array maxInvalidRange to store the maximum diameter on each object o such that there exists no KEC_{q}^{o} with diameter maxInvalidRange $[o]$. This means that $\varnothing\left(\mathrm{SKEC}_{q}^{o}\right)$ must be larger than maxInvalidRange $[o]$. Hence, in the exact algorithm, we can discard o if maxInvalidRange $[o] \geq \frac{2}{\sqrt{3}} \emptyset\left(\mathrm{MCC}_{G_{\text {skeca }}}\right)$ according to Lemma 3. If an object o cannot be pruned, o is possibly
on the boundary of $\mathrm{MCC}_{G_{o p t}}$, and we find all candidate circles that cover all query keywords and pass through o, and in each of them we perform an exhaustive search.

```
Algorithm 3: EXACT ( \(q, \alpha\) )
\(1 G_{\text {skeca }} \leftarrow\) SKECa+ \((q, \alpha)\);
\(2 \operatorname{diam} \leftarrow \frac{2}{\sqrt{3}} \varnothing\left(\mathrm{MCC}_{G_{\text {skeca }}}\right)\);
3 bestGroup \(\leftarrow G_{\text {skeca }}\);
4 get the array maxInvalidRange computed in SKECa+;
5 foreach \(o\) in \(\mathcal{O}^{\prime}\) do
        if maxInvalidRange \([0]<\operatorname{diam}\) then
            circleScanSearch(o, diam, bestGroup);
    return bestGroup;
```

The pseudocode is described in Algorithm 3. We first invoke SKECa+ to get an approximate result (line 1). Then we compute the upper bound diam of the diameter of the smallest circle that encloses the optimal group (line 2). On each object o, if it cannot be pruned (line 6), we invoke Procedure circleScanSearch() to find all keywords enclosing circles with diameter diam around o, to do exhaustive search in each such circle, and to update the best group (line 7). After all objects in \mathcal{O}^{\prime} are processed, we return bestGroup as the result.

Procedure circleScanSearch(). In this procedure, we first find all o-across keywords enclosing circles with diameter $\frac{2}{\sqrt{3}} \emptyset\left(\mathrm{MCC}_{G_{\text {skeca }}}\right)$ on an object o, which are candidate circles. The idea is similar to that of Procedure circleScan(). We first fix a sweeping area around o that contains all objects relevant to the query whose distances to o are smaller than $\frac{2}{\sqrt{3}} \phi\left(\mathrm{MCC}_{G_{\text {skeca }}}\right)$. In this sweeping area, we rotate the circle around o with diameter $\frac{2}{\sqrt{3}} \phi\left(\mathrm{MCC}_{G_{\text {skeca }}}\right)$ clockwise. We also use a table Tab to store all keywords with their frequencies covered in the rotating circle, and update it once an object is rotated inside-out or outside-in. Once all query keywords are contained in $T a b$, we know that a KEC_{q}^{o} (which is a candidate circle) is found.

In circleScan(), once a KEC_{q}^{o} is found it returns immediately, because the procedure only checks if there exists a KEC_{q}^{o} with a given diameter. In circleScanSearch() we need to perform an exhaustive search to find the best group in the circle. Hence, after the group is found, we still need to repeat the above process to find all candidate circles on o, and to enumerate the best group in each of them. We invoke Procedure search() to perform exhaustive search to enumerate the group with the smallest diameter in a candidate circle, which is presented as follows.

5.2 Procedure search()

The search() procedure is designed as a branch-and-bound process. We adopt the depth-first-search strategy to do enumeration. We use selectedSet to store the objects that are already selected in the current enumeration. The object o on which the search is performed is always in selectedSet since it must be contained in the generated group. We use candidateSet to store the objects in the circle that are possible to combine with objects in selectedSet to form a group whose diameter is smaller than that of the current best group.

In each step, we select one object from candidateSet and check if combining it with the objects in selectedSet can generate a better group. If so, we remove this object from candidateSet and add it to selectedSet. This step is performed iteratively. The level of this depth-first-search is at most the number of query keywords, because each enumerated object contains at least one new query keyword. The current best group curGroup is updated when a group covering all the query keywords with smaller diameter is found.

The search complexity is exponential with the number of objects relevant to the query in a candidate circle. We develop several pruning strategies utilizing both textual and spatial properties in search() to improve efficiency.
Pruning Strategy 1. Given an object o, and let G denote the group selectedSet $\cup o$, if the diameter of G exceeds the diameter of the current best group curGroup, o does not need to be added to selectedSet. This is because that, for any group G^{\prime} generated from G, it is true that $\delta\left(G^{\prime}\right) \geq \delta(G)$. Hence, the diameter of G^{\prime} is also larger than δ (curGroup), which means that no better groups can be obtained from G.
Pruning Strategy 2. If an object o cannot contribute any new keyword to selectedSet, o is not necessary to be added to selectedSet. This can be justified as follows: Denote the group selectedSet $\cup o$ by G. selectedSet and G cover the same set of query keywords and $\delta($ selectedSet $) \leq \delta(G)$, and thus G can be pruned.
Pruning Strategy 3. If the objects in candidateSet cannot cover the keywords that have not be covered by selectedSet, we can stop the search using selectedSet. This is because that even if we select all the objects in candidateSet, and combine them with the objects in selectedSet, a group covering all the query keywords cannot be generated.

```
Procedure \(\operatorname{search}(q\), selectedSet, candidateSet, maxId \()\)
    if selectedSet. \(\psi=q\) then
        if \(\delta(\) selectedSet \() \leq \delta(\) curGroup \()\) then
            curGroup \(\leftarrow\) selectedSet;
        return curGroup;
    if \(\delta(\) selectedSet \()>\delta(\) curGroup \()\) then return \(\emptyset\);
    nextSet \(\leftarrow \emptyset\);
    leftKeyowrds \(\leftarrow \emptyset\);
    foreach candidate object \(o_{c}\) in candidateSet do
        if \(\delta\left(\right.\) selectedSet \(\left.\cup o_{c}\right)>\delta(\) curGroup \()\) then continue ;
        if \((q-\) selectedSet. \(\psi) \cap o_{c} . \psi=\emptyset\) then continue ;
        if \(o_{c}\).Id \(<\operatorname{maxId}\) then continue ;
        nextSet \(\leftarrow\) nextSet \(\cup o_{c}\);
        leftKeywords \(\leftarrow\) leftKeywords \(\cup o_{c} \cdot \psi\);
    if leftKeywords \(\cup\) selectedSet. \(\psi!=q\) then
        return curGroup;
    foreach object on in nextSet do
        newselSet \(\leftarrow\) selectedSet \(\cup o_{n}\);
        newcandSet \(\leftarrow\) nextSet \(\backslash o_{n}\);
        group \(\leftarrow \operatorname{search}\left(q\right.\), newselSet, newcandSet, \(\left.o_{n} . I d\right)\);
        if \(\delta\) (group) \(<\delta\) (curGroup) then
            curGroup \(\leftarrow\) group;
    return curGroup;
```

In Procedure search(), if selectedSet already covers all query keywords, we compare this group with the current best group, and we return the better one as the result (lines 1-4). We then check if the selected group is already worse than the current best solution (line 5). In lines 8-13, we scan candidateSet and filter out objects that cannot be combined with objects in selectedSet. Line 9 applies the pruning strategy 1 , line 10 applies the pruning strategy 2 , and line 11 is used to avoid enumerating duplicate groups. We check whether the pruning strategy 3 is satisfied in lines $14-15$. After we add a new object to selectedSet, we invoke the procedure recursively to find the group with newly selected object set newselSet and new candidate object set newcandSet and update curGroup correspondingly (lines 17-21).

Complexity. If there are relevant n objects in the sweeping area in circleScanSearch() in the worst case, the complexity of computing and sorting the rotation angles is $O(n \log n)$. The exhaustive search in the sweeping area has complexity $O\left(n^{|q|-1}\right)$, because the depth-first search level is at most $|q|$ and the object on which the search is performed already contains at least one query keyword.

Since the diameter of the candidate circle is bounded as shown in Lemma $2, n$ is usually not large. In summary, on an object the total search complexity is $O\left(n \log n+n^{|q|-1}\right) \approx O\left(n^{|q|-1}\right)$. If there are \mathcal{O}^{\prime} objects relevant to the query, the worst case time complexity of EXACT is $O\left(\left|\mathcal{O}^{\prime}\right| n^{|q|-1}\right)$, where in general $n \ll\left|\mathcal{O}^{\prime}\right|$. In practice, we only do the search on objects satisfying the bound as described in Lemma 3, and thus the practical performance is better than analyzed. Note that the worst case time complexity of the best known solution [22] is $O\left(\left|\mathcal{O}^{\prime}\right|^{|q|}\right)$, which it worse than EXACT. As to be shown in the experimental study in Section 6, EXACT is much more efficient.

6. EXPERIMENTAL STUDY

6.1 Experimental Settings

Algorithms. We evaluate four approximation algorithms, namely $G K G$ (in Section 3), SKEC (in Section 4.2), SKECa (in Section 4.3), and SKECa+ (in Section 4.4), and the exact algorithm EXACT (in Section 5). We also compare our exact algorithm with the state-of-the-art solution proposed in the work [22], denoted by VirbR, and the methods of adapting the spatial group keyword query [16], denoted by ASGK and ASGKa (Section 2.2).

Dataset	Number of Objects	Unique words	Total words
NY	485,059	116,546	$1,143,013$
LA	724,952	161,489	$1,833,486$
TW	$1,000,100$	487,552	$5,170,495$

Table 1: Dataset properties
Datasets. We use three real-life datasets. Table 1 lists some properties of these datasets. Datasets NY and LA are crawled using Google Place API in New York and Los Angeles, respectively. Each crawled object has a name and a type such as "food" and "restaurant," used as the textual description of the object, and a pair of latitude and longitude representing its location. Dataset TW is crawled from Twitter within the area of USA. Each geo-tweet is treated as a geo-textual object, and its content is used as the description of the object and its latitude and longitude are used as the geo-location of the object.

The location of an object is in form of a pair of latitude and longitude. In order to compute the Euclidean distance between locations, we convert the data to the UTM (Universal Transverse Mercator coordinate system) format, using World Geodetic System 84 specification.
Query generation. We generate 5 query sets with different numbers of keywords, i.e., $2,4,6,8$, and 10 , for each dataset. Each set comprises 50 queries. According to the complexity analysis of the proposed approximation and exact algorithms, their runtimes are affected by the diameter of the optimal group w.r.t. a given query. When evaluating the effect of a certain parameter, we try to bound the diameter of the optimal group for a query, so that the effect of the diameter does not vary too much for queries in one set. For example, to set the upper bound diameter at 20% of the diameter of the whole dataset, we first randomly draw a circle with diameter no larger than 20% of the diameter of all objects in the dataset, and then we randomly select the terms that appear in this circle according to their frequencies. This makes sure that the diameter of the optimal group cannot exceed 20% of the diameter of the whole dataset. It is hard to impose a lower bound constraint when generating queries. We also study the effect of the diameter bound on the efficiency of algorithms.

We set the number of query keywords to 6 and the diameter bound to 20% of the diameter of a dataset by default in our experiments.

Setup. The virtual bR^{*}-tree index structure is disk resident, and the page size is set to 4 KB . The number of children of a node in the tree is set to 100 . All algorithms were implemented in $\mathrm{C}++$ and run on Linux with a 2.66 GHz CPU and 8 GB RAM.

6.2 Experimental Results

6.2.1 Tuning the binary search parameter ϵ

The value of ϵ affects both efficiency and accuracy of SKECa and SKECa+. We vary ϵ from 0.0004 to 0.25 . Figures 9(a) and 9(b) show the runtime and the accuracy of SKECa and SKECa+ when we vary ϵ on the LA dataset, respectively.

Figure 7: Varying ϵ
It can be observed that SKECa always runs slower than SKECa+. Recall that the steps of binary search needed to be performed is linear with $O\left(\log \frac{1}{\epsilon}\right)$ in SKECa. Hence, as ϵ increases, SKECa runs faster because a larger ϵ reduces the steps of binary search performed on each object. SKECa and SKECa+ return the same result, and the difference is the way of performing the binary search. Parameter ϵ also determines the steps of binary search in SKECa+. However, since SKECa+ performs the binary search on all objects relevant to the query together, its runtime is only slightly affected and is much better than that of SKECa.

The two algorithms have the same accuracy, and the accuracy drops as ϵ becomes larger. Using a smaller ϵ can obtain a circle that is more close to SKEC_{q}, and thus the group enclosed in the circle found finally is more close to the optimal result. This is consistent with the ratio of the two algorithms, i.e., $\left(\frac{2}{\sqrt{3}}+\epsilon\right)$.

Because SKECa+ outperforms SKECa consistently, we report the results of SKECa+ in subsequent experiments only. Based on Figure 6, we set ϵ to 0.01 for $S K E C a+$ by default, because it strikes a good tradeoff between accuracy and efficiency. Similar results are observed on the other two datasets, and we report them in Appendix F .

6.2.2 Varying the number of query keywords

Figure 8 shows the runtime (in logarithmic scale) and accuracy of the six algorithms, i.e., GKG, SKECa+, EXACT, VirbR, ASGK and ASGKa when we vary the number of query keywords on each dataset.

On all datasets, SKECa+ achieves better accuracy than does $G K G$, because it has a better approximation ratio. SKECa+ can always obtain nearly optimal groups. GKG runs the fastest on all datasets. It is interesting to observe that $G K G$ runs faster as the number of query keywords increases on some datasets. The reason is as follows. GKG only searches for a group of objects that contain the most infrequent query keyword. Given more query keywords, the most infrequent keyword is more likely to have lower frequency, and thus fewer objects need to be checked. SKECa+ runs slower as the number of query keywords increases. Recall that the complexity of SKECa+ is $O\left(\left|\mathcal{O}^{\prime}\right| \log \frac{1}{\epsilon} n \log n\right)$. Given more query keywords, the number of objects relevant to the query $\left|\mathcal{O}^{\prime}\right|$ becomes larger. In addition, the number of relevant objects in the sweeping area n in Procedure circleScan() also increases.
GKG - SKECa+ $\cdots-\cdots$ EXACT $\cdots \cdots \cdots$

(a) Runtime (NY)

(c) Runtime (LA)

(e) Runtime (TW)

(b) Appro. Ratio (NY)

(d) Appro. Ratio (LA)

(f) Appro. Ratio (TW)

Figure 8: Varying number of query keywords

EXACT outperforms VirbR by more than an order of magnitude on all datasets when queries contain more than 4 keywords. EXACT can answer most queries within 10 seconds, but VirbR takes several minutes to answer a query in average when queries contain 8 or 10 keywords. Recall that the complexity of EXACT is $O\left(\left|\mathcal{O}^{\prime}\right| n^{|q|-1}\right)$. As the number of query keywords increases, the number of objects relevant to the query $\left|\mathcal{O}^{\prime}\right|$ increases, and the number of objects in the sweeping area n also increases, and hence EXACT runs slower. The complexity of VirbR is $O\left(\left|\mathcal{O}^{\prime}\right|^{|q|}\right)$, and thus it also runs slower as the number of query keywords increases. Recall that the EXACT algorithm first invokes SKECa+ to reduce the search space then it performs the exhaustive search. The experimental results show that $S K E C a+$ is able to prune the search space significantly, thus making EXACT efficient.

We observe that the performance of $A S G K$ is much worse than VirbR and EXACT. Both the efficiency and accuracy of ASGKa are much worse than SKECa+. They are not originally developed to process the m CK query, and the results show the adaption of the algorithms [16] for processing the $m \mathrm{CK}$ query is not efficient. We will ignore $A S G K$ and $A S G K a$ in the subsequent experiments.

Figure 9 shows the comparison of the algorithms SKEC and $S K E C a+$ on dataset LA. The runtime of SKECa+ is much better than SKEC, which is consistent with the analysis of the time complexity of the two algorithms in Section 4. SKEC is extremely slow when the number of query keywords is large, because the number of relevant objects $\left(\mathcal{O}^{\prime}\right)$ becomes larger, and the worst case complexity of this algorithm is $\mathrm{O}\left(\left|\mathcal{O}^{\prime}\right|^{4}\right)$. When there are more than 6 keywords, lots of queries take at least 5 minutes to finish, and thus we only report the results on query sets containing 2,4 , and 6 keywords to make the figure readable. It can be observed that the two algorithms have similar accuracy, because we set ϵ to 0.01 , a very
small value to control the error of SKECa+. The relative performance comparisons between SKEC and SKECa+ are qualitatively similar in other experiments and we do not report them.

Figure 9: Comparing SKEC with SKECa+

6.2.3 Varying the optimal group diameter bound

In this set of experiments, we study the effect of the diameter bound of the optimal group for a query. We vary the diameter bound from 10% to 30% of the diameter of a dataset. Figure 10 shows the results on LA and TW.

Figures 10(a) and 10(e) show the runtime of two approximation algorithms on LA and TW. GKG searches for a group around each object containing the most infrequent keyword, and the group diameter does not affect the runtime of $G K G$. As the diameter bound increases SKECa+ runs slower. The reason is that with a larger bound the optimal group for a query is more likely to have a larger diameter, and SKECa+ needs to scan a larger sweeping area to find a keywords enclosing circle with the given diameter. From Figures $10(\mathrm{~b})$ and $10(\mathrm{f})$ we can see that SKECa+ has better accuracy than $G K G$ and is always able to achieve nearly optimal results.

Due to the hardness of answering $m \mathrm{CK}$ queries, the exact algorithms may be very slow on some queries which dominate the average running time. For the readability of our figures, we set a timeout threshold to 1 minute. We observe that the queries where VirbR succeeds to find the result within the timeout threshold can always be answered by our algorithm EXACT. When comparing the two algorithms, we only report on queries where both algorithms succeed to return a result within the time limit.

Figures $10(\mathrm{c})$ and $10(\mathrm{~g})$ show the runtime of EXACT and VirbR (y-axis in logarithmic scale) on LA and TW. It is shown that $E X$ $A C T$ outperforms VirbR by about one order of magnitude on those queries that both algorithms can finish in 1 minute. The success rate of two algorithms is shown in Figures 10(d) and 10(h). EX$A C T$ always has a better success rate (close to 100%). Both algorithms have lower success rate as the diameter bound increases. This is because that if the optimal group has a larger diameter the exhaustive search takes longer time in both algorithms. We observe similar result on NY and ignore it.

To further study these slow queries, Figure 11 compares the runtime and success rate of EXACT and VirbR, when the timeout threshold varies from 15 seconds to 4 minutes and the diameter is bounded by 30% of the whose space. EXACT solves most queries within 15 seconds and it always outperforms VirbR.

We study the cases where EXACT greatly outperforms VirbR, and we find that the result groups of these queries have small diameters. Recall that $E X A C T$ first reduces the search space by utilizing SKECa+ and then performs the exhaustive search in the reduced space. For queries that cannot be solved within 15 seconds by both algorithms, we find that these queries contain keywords with both high and low frequency and the diameter of the result group is large.

6.2.4 Varying the query keywords frequencies

In this set of experiments, we vary the frequencies of query keywords and evaluate the performance of five algorithms on LA, i.e., GKG, SKECa+, EXACT, and VirbR. We rank terms in ascend-

Figure 10: Varying optimal group diameter bound

Figure 11: Varying timeout threshold
ing order of their frequencies, and then generate a query set using lower $x \%$ terms, i.e., we select terms from the $x \%$ least frequent terms to form a query. We vary $x \%$ from 20% to 100% to generate 5 query sets (100% means that the query keywords are selected from all terms in a dataset according to their frequency, as we do in previous experiments).

Figure 12 shows the runtime and accuracy of four algorithms. It can be observed in Figure 12(a) that as the frequency of query keywords increases, both approximation algorithms run slower. This is because that more objects need to be taken into consideration during algorithm execution. The runtime of EXACT and VirbR is reported only on queries that can be answered within the 1 minute threshold. EXACT has better success rate as shown in Figure 12(d); on the queries that both algorithms succeed, EXACT is almost one
order of magnitude faster than VirbR, as shown in Figure 12(c) (y axis in logarithmic scale). EXACT and VirbR run slower as query keywords become more frequent, which is consistent as analyzed. We observe similar results on the other two datasets and they are not reported.

Figure 12: Varying query keywords frequencies

6.2.5 Scalability

To evaluate scalability, we use 5 datasets containing tweets with locations, all of which are crawled from Twitter. The largest dataset contains 5 million tweets, and we sample other datasets from it. Figure 13 shows the runtime and approximation ratio of four algorithms on TW, i.e., GKG, SKECa+, EXACT and VirbR (the number of query keywords is 6). Both approximation algorithms scale quite well with the size of the dataset, and all queries can be answered within 1 second by GKG and SKECa+. The EXACT algorithm also scales well. VirbR runs slower than EXACT by orders of magnitude, and it takes more than one minute to answer a query in average when the dataset contains more than 3 million objects. The accuracy changes only slightly, and SKECa+ always returns nearly optimal results and has better accuracy than $G K G$.

Figure 13: Scalability

7. RELATED WORK

The spatial keyword queries are gaining in prevalence and are widely used in many real-life applications. For example, in Google Maps "search nearby" offers users the functionality to retrieve points of interest around a specified location. Most existing studies on spatial keyword querying focus on retrieving a list of single geotextual objects such that each object returned is both relevant to query keywords and close to query location. The spatial keyword queries can be categorized into two types according to how keywords are used in querying. In some proposals (e.g., $[4,6,9,13$, 20,23]), keywords are used as Boolean predicates to filter out ob-
jects that do not contain the keywords, and the remaining objects are ranked based on their spatial proximity to the query. In other proposals(e.g., $[6,7,14])$, spatial proximity and textual relevance are combined by a linear function to rank geo-textual objects.

Several recent proposals consider searching for a group of geotextual objects instead of single objects. As described in Section 2.2, the $m \mathrm{CK}$ query is proposed and studied in the works [21,22]. The existing studies on the $m \mathrm{CK}$ query $[21,22$] do not study the hardness of this problem and propose exact algorithms only. We prove that answering the $m \mathrm{CK}$ query is NP-hard and propose both exact and approximation algorithms. The spatial group keyword query SGK $[2,16]$ takes a location and a set of keywords as query arguments. It retrieves a group that covers all the query keywords, has a small diameter, and is close to the query location. As analyzed in Section 2.2, one special case of the SGK query [2] is equivalent to the $m \mathrm{CK}$ query, and the algorithm proposed is reduced to the method [21] when being applied to the m CK query, and thus is worse than the baseline VirbR [22], used in our experiments. As discussed in Section 2.2, another type of the SGK query [16] can be adapted to answer the m CK query, and as shown in the experimental study, its performance is much worse than our proposed algorithm. The SGK query and the $m \mathrm{CK}$ query suit different application scenarios. Consider the tourist example in Section 1. If the tourist has already booked a hotel, then the SGK query could be used where the hotel serves as the query location. Otherwise, the $m \mathrm{CK}$ query is suitable where "hotel" is one of the query keywords.

In addition, some proposals consider spatial keyword queries on road networks (e.g., $[3,18]$), and spatial keyword queries on trajectory databases are also studied (e.g., [8, 19, 24]). There also exists some work (e.g., [12]) querying geo-textual objects whose locations are represented by rectangles. The problem of spatio-textual similarity joins is also studied to join two sets of geo-textual objects [1,15].

8. CONCLUSION

We study the problem of answering $m \mathbf{C K}$ queries in this paper. We prove that this problem is NP-hard. We propose a 2 approximation greedy approach as a baseline. Utilizing this greedy method, we first devise an approximation algorithm SKEC that aims at finding the smallest circle that can enclose a group of objects covering all query keywords. We prove that its approximation ratio is $\frac{2}{\sqrt{3}}$. SKEC has a high complexity, and we design another two approximation algorithms, SKECa and SKECa+, to find such a circle approximately for better efficiency. Their approximation ratio is $\left(\frac{2}{\sqrt{3}}+\epsilon\right)$, where ϵ can be an arbitrarily small positive value. We also design an exact algorithm utilizing SKECa+ to reduce the exhaustive search space significantly. Extensive experiments were conducted, which verifies our theoretical analysis and shows that our exact algorithm outperforms the best known solution by an order of magnitude. In the future, it would be of interest to investigate the problem of answering the mCK query in a distributed setting.

9. ACKNOWLEDGEMENTS

This research was carried out at the Rapid-Rich Object Search (ROSE) Lab at the Nanyang Technological University, Singapore. The ROSE Lab is supported by the National Research Foundation, Prime Minister's Office, Singapore, under its IDM Futures Funding Initiative and administered by the Interactive and Digital Media Programme Office. This work was also supported in part by a Singapore MOE AcRF Tier 2 Grant (ARC30/12). We thank the authors $[16,22]$ for sharing their codes.

10. REFERENCES

[1] P. Bouros, S. Ge, and N. Mamoulis. Spatio-textual similarity joins. $P V L D B, 6(1): 1-12,2012$.
[2] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective spatial keyword querying. In SIGMOD, pages 373-384, 2011.
[3] X. Cao, G. Cong, C. S. Jensen, and M. L. Yiu. Retrieving regions of interest for user exploration. Proceedings of the VLDB Endowment, 7(9), 2014.
[4] A. Cary, O. Wolfson, and N. Rishe. Efficient and scalable method for processing top-k spatial boolean queries. In SSDBM, pages 87-95, 2010.
[5] L. Chen, G. Cong, C. S. Jensen, and D. Wu. Spatial keyword query processing: An experimental evaluation. $P V L D B$, 6(3):217-228, 2013.
[6] M. Christoforaki, J. He, C. Dimopoulos, A. Markowetz, and T. Suel. Text vs. space: efficient geo-search query processing. In CIKM, pages 423-432, 2011.
[7] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k most relevant spatial web objects. $P V L D B$, 2(1):337-348, 2009.
[8] G. Cong, H. Lu, B. C. Ooi, D. Zhang, and M. Zhang. Efficient spatial keyword search in trajectory databases. arXiv preprint arXiv:1205.2880, 2012.
[9] I. De Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial databases. In ICDE, pages 656-665, 2008.
[10] D. Elzinga and D. Hearn. The minimum covering sphere problem. Management Science, 19(1):96-104, 1972.
[11] J. Elzinga and D. W. Hearn. Geometrical solutions for some minimax location problems. Transportation Science, 6(4):379-394, 1972.
[12] J. Fan, G. Li, L. Zhou, S. Chen, and J. Hu. SEAL: Spatio-textual similarity search. $P V L D B, 5(9): 824-835$, 2012.
[13] R. Hariharan, B. Hore, C. Li, and S. Mehrotra. Processing spatial-keyword (SK) queries in geographic information retrieval (GIR) systems. In $S S D B M$, page 16, 2007.
[14] Z. Li, K. C. K. Lee, B. Zheng, W.-C. Lee, D. L. Lee, and X. Wang. IR-Tree: An efficient index for geographic document search. TKDE, 23(4):585-599, 2011.
[15] S. Liu, G. Li, and J. Feng. Star-join: spatio-textual similarity join. In CIKM, pages 2194-2198, 2012.
[16] C. Long, R. C.-W. Wong, K. Wang, and A. W.-C. Fu. Collective spatial keyword queries: a distance owner-driven approach. In SIGMOD, pages 689-700, 2013.
[17] N. Megiddo. Linear-time algorithms for linear programming in R^{3} and related problems. In $F O C S$, pages 329-338, 1982.
[18] J. B. Rocha-Junior and K. Nørvåg. Top-k spatial keyword queries on road networks. In $E D B T$, pages $168-179,2012$.
[19] S. Shang, R. Ding, B. Yuan, K. Xie, K. Zheng, and P. Kalnis. User oriented trajectory search for trip recommendation. In $E D B T$, pages $156-167,2012$.
[20] C. Zhang, Y. Zhang, W. Zhang, and X. Lin. Inverted linear quadtree: Efficient top-k spatial keyword search. In ICDE, pages 901-912, 2013.
[21] D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and M. Kitsuregawa. Keyword search in spatial databases: Towards searching by document. In ICDE, pages 688-699, 2009.
[22] D. Zhang, B. C. Ooi, and A. K. H. Tung. Locating mapped resources in Web 2.0. In ICDE, pages 521-532, 2010.
[23] D. Zhang, K.-L. Tan, and A. K. H. Tung. Scalable top-k spatial keyword search. In EDBT, pages 359-370, 2013.
[24] K. Zheng, S. Shang, N. J. Yuan, and Y. Yang. Towards efficient search for activity trajectories. In $I C D E$, pages 230-241, 2013.

APPENDIX

A. PROOF OF THEOREM 1

Proof. We prove the theorem by a reduction from the 3-SAT problem. An instance of the 3 -SAT consists of $\phi=C_{1} \wedge C_{2} \wedge$ $\cdots \wedge C_{n}$, where each clause $C_{i}=\left\{x_{i} \vee y_{i} \vee z_{i}\right\}(i=1, \cdots, n)$, and $\left\{x_{i}, y_{i}, z_{i}\right\} \subset\left\{u_{1}, \bar{u}_{1}, \cdots, u_{m}, \bar{u}_{m}\right\}$. The decision problem is to determine whether we can assign a value (true or false) to each variable $u_{i}, i=1, \ldots, m$, such that ϕ is true. We transform an instance of the 3-SAT problem to an instance of the $m \mathrm{CK}$ problem as follows. We consider a circle of diameter d^{\prime}. Each variable u_{i} corresponds to a point on the circle, and we place its negation \bar{u}_{i} diametrically opposite on the circle. Then the distance between u_{i} and \bar{u}_{i} is d^{\prime}. We set $d^{\prime}=d+\epsilon$, where ϵ is a sufficiently small and positive value, such that the distance between any two points corresponding to different variables is no larger than d.

For each pair of variables u_{i} and \bar{u}_{i}, we create a keyword q_{i} $(i=1, \cdots, m)$ and associate it with the points corresponding to u_{i} and \bar{u}_{i}. For each clause C_{i}, we create a keyword $q_{m+i}(i=$ $1, \cdots, n)$ and associate it with the points corresponding to the three variables in C_{i}. Therefore, given a 3-SAT instance ϕ, we have an m CK query q of $n+m$ keywords. If there exists a result of q of diameter at most d, then there exists a satisfying assignment for $\phi=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{n}$. On the other hand, a satisfying assignment of the 3-SAT problem determines a set of points with diameter at most d covering all keywords in q. Therefore, the proof is complete.

B. DETAILS OF GKG

The GKG algorithm is detailed in Algorithm 4. We first find the most infrequent query keyword $t_{\text {inf }}$ (line 1). For each object o containing $t_{i n f}$, we utilize the virtual bR^{*}-tree indexing structure [22] to find the nearest object containing a term t to o. Alternatively, we can also use other geo-textual indexes in place (such as IR-tree [7]) and our algorithm $G K G$ is equally applicable. We initialize a min priority queue Queue to store the nodes and objects traversed, and their minimum distances to o are used as the key. Initially, the root node of the virtual bR^{*}-tree is inserted into Queue (line 6). If there are some keywords uncovered, we find the nearest object for each of them (lines 9-20). In each loop, we read the element e that is nearest to o (line 9). If it is an object, we insert it into group and remove e. ψ from ucSet (lines 9-10). Otherwise, we read each of its child node e^{\prime}, and insert it into Queue only if it covers some keywords in $u c S e t$ (lines 14-20). We compare the group found around o with the current best group $G_{g k g}$, and update $G_{g k g}$ if group has smaller diameter (line 21).

C. PROOF OF THEOREM 4

Proof. 1). If MCC_{G} is determined by two points in G, according to Theorem 3, the diameter of MCC_{G} is equal to the distance between the two points, and thus we have $\delta(G)=\varnothing\left(\mathrm{MCC}_{G}\right)$.
2). Consider that MCC_{G} is determined by three points A, B, and C in G. We use $\angle A, \angle B$, and $\angle C$ to denote the three angles of the triangle consisting of the three points. First, it is obvious that the distance between any two objects cannot exceed the diameter of the

```
Algorithm 4: \(G K G\) ( \(q\), tree)
\(G_{g k g} \leftarrow \emptyset ;\)
\(t_{\text {inf }} \leftarrow\) the most infrequent keyword
foreach object o containing \(t_{\text {inf }}\) do
        group \(\leftarrow\{o\}\);
        Queue \(\leftarrow\) new min-priority queue;
        Queue.Enqueue(tree.root, 0);
        \(u c S e t \leftarrow q . \psi \backslash o . \psi ; \quad / /\) uncovered keywords
        while ucSet is not empty do
            \(e \leftarrow\) Queue.Dequeue();
            if \(e\) is an object then
                    group \(\leftarrow\) group \(\cup e\);
                    \(u c S e t \leftarrow u c S e t \backslash e . \psi ;\)
            else
                    foreach entry \(e^{\prime}\) in node \(e\) do
                    if ucSet \(\cap e^{\prime} \cdot \psi \neq \emptyset\) then
                            if \(e\) is a leaf node then
                        dist \(\leftarrow \operatorname{Dist}\left(e^{\prime}, q\right) ;\)
                    else
                        dist \(\leftarrow \operatorname{minDist}\left(e^{\prime}, q\right)\)
                            Queue.Enqueue( \(e^{\prime}\), dist);
        if \(G_{g k g}\) is \(\emptyset\) or \(\delta(\) group \()<\delta\left(G_{g k g}\right)\) then
            \(G_{g k g} \leftarrow\) group \(;\)
    return \(G_{g k g}\);
```

circle, and thus we have $\delta(G) \leq \emptyset\left(\mathrm{MCC}_{G}\right)$. Second, we assume $\angle C$ is the largest angle. Since $\angle A+\angle B+\angle C=180^{\circ}$, we can conclude that $\angle C \geq 60^{\circ}$. According to Theorem 3, the triangle is not obtuse, and thus we know that $60^{\circ} \leq \angle C \leq 90^{\circ}$. Because MCC_{G} is also the circumcircle of the three points, we obtain that $\frac{\overline{A B}}{\sin \angle C}=\varnothing\left(\mathrm{MCC}_{G}\right)$ according to the law of sines. Hence, we can get $\sin 60^{\circ} \leq \frac{\overline{A B}}{\bar{\phi}\left(\mathrm{MCC}_{G}\right)} \leq \sin 90^{\circ}$. Because $\delta(G)$ must be no smaller than $\overline{A B}$, we get $\frac{\sqrt{3}}{2} \varnothing\left(\mathrm{MCC}_{G}\right) \leq \overline{A B} \leq \delta(G)$.
3). When there are more than three points on MCC_{G}, we can transform this to the cases that MCC_{G} is determined by either two or three points as follows: first, we select one point on MCC_{G}, and we remove it from G to check if the minimum covering circle of the remaining points is the same as MCC_{G}. If so, we ignore it; otherwise, we select the next point and repeat the above process. Finally, we will select two or three points that determines MCC_{G}, and then we can apply the proof in cases 1) and 2).

D. PROCEDURE FINDOSKEC()

First, we read objects whose distances to o are smaller than the diameter of the current best circle $C_{c u r}$ (line 1). We process these objects in ascending order of their distances to o. When the second object o_{j} is fixed, we enumerate the third object o_{m} to obtain a candidate circle $C_{c a n}$ (lines 7-10). Next, if $C_{c a n}$ has a smaller diameter than the current best circle $C_{c u r}$, we check if the objects in $C_{c a n}$ can cover all query keywords (lines 11-18). If so, we update $C_{c u r}$ as $C_{c a n}$ and begin to enumerate the next circle.

E. PROOF OF THEOREM 6

Proof. We have $\delta\left(G_{\text {skeca }}\right) \leq \varnothing\left(\mathrm{MCC}_{G_{\text {skeca }}}\right)$ according to Theorem 4, and $\varnothing\left(\operatorname{SKEC}_{q}\right) \leq \frac{2}{\sqrt{3}} \delta\left(G_{\text {opt }}\right)$ according to Theorem 5. Hence, we can obtain $\delta\left(G_{\text {skeca }}\right) \leq \frac{2}{\sqrt{3}} \delta\left(G_{\text {opt }}\right)+\alpha=\frac{2}{\sqrt{3}} \delta\left(G_{\text {opt }}\right)+$ $\epsilon \delta\left(G_{g k g}\right) / 2$. Because $\delta\left(G_{g k g}\right) \leq 2 \delta\left(G_{o p t}\right)$, we have:

$$
\frac{\delta\left(G_{\text {skeca }}\right)}{\delta\left(G_{\text {opt }}\right)} \leq \frac{2}{\sqrt{3}}+\epsilon \frac{\delta\left(G_{g k g}\right)}{2 \delta\left(G_{o p t}\right)} \leq \frac{2}{\sqrt{3}}+\epsilon .
$$

Thus we complete the proof.

```
Procedure findOSKEC \(\left(o, C_{c u r}\right)\)
1 olist \(\leftarrow\) a list of objects in \(\mathcal{O}^{\prime}\) whose distances to \(o\) are smaller than
    \(\emptyset\left(C_{c u r}\right)\), ranked by their distances to \(o\);
    foreach object \(o_{j} \in\) olist do
        if \(\operatorname{Dist}\left(o, o_{j}\right)>\phi\left(C_{c u r}\right)\) then
                break;
            foreach object \(o_{m} \in\) olist do
                if \(\operatorname{Dist}\left(o_{m}, o\right) \geq \operatorname{Dist}\left(o_{j}, o\right)\) or \(\operatorname{Dist}\left(o_{m}, o_{j}\right) \geq \phi\left(C_{c u r}\right)\)
                then
                    break;
                if \(o_{j}=o_{m}\) then
                    \(C_{c a n} \leftarrow \mathrm{MCC}_{\left\{o, o_{j}\right\}} ;\)
                else
                    \(C_{c a n} \leftarrow \mathrm{MCC}_{\left\{o, o_{j}, o_{m}\right\}} ;\)
                if \(\phi\left(C_{c a n}\right)<\phi\left(C_{c u r}\right)\) then
                    \(u c S e t \leftarrow q . \psi \backslash o . \psi / /\) uncovered keywords
                    foreach object \(o^{\prime} \in\) olist do
                    if \(o^{\prime}\) in \(C_{\text {can }}\) then
                        \(u c S e t \leftarrow q . \psi \backslash o^{\prime} . \psi ;\)
                    if ucSet is empty then
                        \(C_{c u r} \leftarrow C_{c a n}\);
                        break;
    return \(C_{\text {cur }}\);
```


F. TUNING THE BINARY SEARCH PARAMETER ϵ

We also study the effect of ϵ on the efficiency and accuracy of SKECa and SKECa+ on datasets NY and TW. We vary ϵ from 0.0004 to 0.25 . Figures 14(a) and 14(b) show the runtime and the accuracy of SKECa and SKECa+ when we vary ϵ on the NY dataset, respectively. Figures 14(c) and 14(d) show the runtime and the accuracy of SKECa and SKECa+ when we vary ϵ on the TW dataset, respectively.

It can be observed that the similar results are obtained to that on LA. SKECa always runs slower than SKECa+. As ϵ increases, their runtime drops, but the accuracy becomes worse. We observe that on NY and TW, setting ϵ to 0.01 can also balance the efficiency and accuracy well. Thus, we use 0.01 as the default value of ϵ for all experiments on all datasets.

Figure 14: Varying ϵ

[^0]: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
 SIGMOD'15, May 31-June 4, 2015, Melbourne, Victoria, Australia
 Copyright (C) 2015 ACM 978-1-4503-2758-9/15/05 ...\$15.00.
 http://dx.doi.org/10.1145/2723372.2723723.

