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ABSTRACT
In this demonstration we present POIsam, a visualization system
supporting the following desirable features: representativeness, visi-
bility constraint, zooming consistency, and panning consistency. The
first two constraints aim to efficiently select a small set of represen-
tative objects from the current region of user’s interest, and any two
selected objects should not be too close to each other for users to
distinguish in the limited space of a screen. One unique feature of
POISam is that any similarity metrics can be plugged into POISam
to meet the user’s specific needs in different scenarios. The latter
two consistencies are fundamental challenges to efficiently update
the selection result w.r.t. user’s zoom in, zoom out and panning oper-
ations when they interact with the map. POISam drops a common
assumption from all previous work, i.e. the zoom levels and region
cells are pre-defined and indexed, and objects are selected from
such region cells at a particular zoom level rather than from user’s
current region of interest (which in most cases do not correspond to
the pre-defined cells). It results in extra challenge as we need to do
object selection via online computation. To our best knowledge, this
is the first system that is able to meet all the four features to achieve
an interactive visualization map exploration system.
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1 INTRODUCTION
Large collections of geospatial data are becoming increasingly avail-
able, such as geo-tagged micro-blogs (e.g., Twitter), urban data like
real estate properties, etc. Such data are featured with both geospa-
tial content and other content, such as attributes, texts and photos.
It is useful to provide support for end-users to perform visualized
exploration on such geospatial data on maps.

In this demonstration, we aim to achieve two goals. The first goal
is to achieve an efficient spatial object selection, namely the SOS
query: given the current region of user’s interest, how to efficiently
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select a set S of k objects (among all the spatial objects falling in
this region), so that it meets (i) Visibility Constraint — the distance
between any two objects in S is larger than a given distance threshold
θ , and (ii) Representative Constraint — the aggregated similarity
between S and the whole spatial objects in that region is maximized.
We illustrate the above two features in the following example.

Example 1.1. Given a collection of points of interest (POIs),
an end-user would like to browse a small number (denoted by k)
of representative POIs for an area on an online map. Ideally, the
set of selected POIs can well represent the POIs of the area (i.e.,
Representativeness Constraint), and they should not be too close
to each other so that they will not overlap with each other on the
map (i.e., Visibility Constraint) when shown on the screen. Figure 1
demonstrates Example 1.1, where a small number of representative
POIs are shown to user (Figure 1(b)). Note that without selection, it
looks like Figure 1(a). The user may be interested in some POIs, and
he may click one to check the detailed information. Moreover, the
“hidden” tweets that are represented by the selected tweet are also
listed and summarized by a word cloud for users to further explore.

By reviewing the literature in the areas of cartographic selection
and spatial sampling, we find that there have been some studies [5,
7, 8] taking the visibility constraint into account. However, none
of them considers representativeness except for a study done by
Drosou et al. [3], in which it is assumed that the representativeness
of a spatial object is based on its spatial distance to other objects,
and its proposed solution is built based on this assumption.

The POIsam system distinguishes from the literature in two-folds.
First, it supports various types of data resources, and the users can de-
fine their personalized similarity metric to meet different needs. For
example in Figure 3(b), when exploring properties there are different
attributes associated with each house, and users can choose among
them to specify their own preference. Second, POIsam takes the im-
portance of different objects as a factor, such that the results shown
on map are highly related to the user’s preference. For example,
when exploring properties users can choose options like “Distance
to nearest shopping center” or “Land size” such that different needs
can be met. User can also specify the number of shown results and
the minimum overlapping threshold θ such that the objects can be
displayed in the best experience.

Our second goal is to further extend the SOS query to achieve
an interactive spatial object selection, namely the ISOS query. In
particular, the POIsam system is able to answer the SOS query in
an efficient manner, in response to user’s common map navigation
operations, which include zoom-in, zoom-out and panning. As a
result, we define the zooming consistency constraint and panning
consistency contraint when selecting a new set of representative
objects for the new map region.

https://doi.org/10.1145/3183713.3193549
https://doi.org/10.1145/3183713.3193549


(a) Wihtout any selection, it is messy to view all the
POIs

(b) Only a few representative POIs are shown to the user on the map
view (1). After the user clicks on a tweet near Fedration Square, a word
cloud view (2) summaries all the similar tweets and a detailed tweet
view (3) is shown to the user.

Figure 1: Spatial Object Selection Examples (Twitter data)
Figure 2: System Architecture

The ISOS query drops a common assumption from all previous
work, i.e., the zoom levels and region cells are pre-defined and
indexed, and objects are selected from such cells at a particular
zoom level rather than from user’s current region of interest (which
in most cases do not correspond to the pre-defined cells). It poses a
challenge in object selection via online computation.

Section 2 formally defines the SOS and ISOS query, whose sce-
narios are demonstrated in Section 4, where two realworld datasets
from Twitter and Australia Real Estate are used. The problem of
solving SOS/ISOS queries can be shown to be NP-hard. Hence, we
devise two approximation algorithms with provable performance
guarantees. The detailed algorithms to support these two goals can
be found in our recent research work [4].

2 DATA MODEL AND QUERIES.
Geospatial object. A geospatial object o is represented by a triple
o = ⟨λ,ω,A⟩, where o.λ is the location where o is posted, o.ω is
the weight (normalized in [0, 1]), which can be either computed
from some attributes to represent the popularity or importance of the
object, or simply be assigned with a unit weight, and o.A is a set of
attributes of the object. In this demonstration, we consider a large
collection of geospatial objects, denoted by O .

2.1 Spatial Object Selection (SOS) Query
Representativeness Constraint. We compute the representative
score of an object by its similarity with other objects. We denote the
similarity between two objects oi ,oj by a function Sim(oi ,oj ) that is
computed from the attributes oi .A and oj .A, and then normalized in
[0, 1]. We leave Sim(., .) as a general function to cope with various
types of resources to meet different user and application needs.

With a given similarity function Sim(oi ,oj ) between objects, we
define the similarity between an object o and a set S of objects by
Sim(o, S ) = maxo′∈S Sim(o,o′).

We next define the representative score of S , namely Score (S ), by
the similarity between S and O , which incorporates the weight of
each object o and is evaluated by

Score (S ) = Sim(O, S ) =
1
|O |

∑
o∈O

o.ω × Sim(o, S ) (1)

Here we combine the weight of o and the similarity between S and o,
which can be viewed as the utility of object O . Equation 1 aims to
maximize the total utilities of all the selected objects.

Visibility Constraint. Similar to the previous work on query result
diversification and cartographic selection (e.g., [2, 3, 7]), we also
enforce that any two selected objects should not be too close to each
other, so that users can distinguish them on the map.

Definition 2.1. Spatial Object Selection (SOS) Query. Given
a set of geospatial objects O = {o1, . . . ,on } in a region of interest,
a distance threshold θ , and an integer k, the SOS problem aims to
select and show a subset of k objects S ⊆ O on map such that

(1) dist (oi ,oj ) ≥ θ for any oi ,oj ∈ S , and
(2) Sim(O, S ) is maximized.

2.2 Interactive Spatial Object Selection (ISOS)
Query

In order to provide a seamless experience for user’s exploration on
the map, i.e., zooming in, zooming out and panning, it needs to fulfill
the zoom consistency and the movement consistency constraints.
Zooming Consistency Constraint: By zooming in (out), the map is
displayed with a finer (coarser) granularity and more (fewer) details
in the region are visible to users. For any object o appearing at any
coarse granularity, it should also appear in all finer granularities of
regions containing the location of that object as users zoom the map.
Panning Consistency Constraint: Users can move the displayed
region to a new place with the same granularity. For any object o
appearing at a region, it should also appear in all other regions which
contain the location of this object as user pans the map.

Definition 2.2. Interactive Spatial Object Selection (ISOS) Query.
Given a set of geospatial objects O = {o1, . . . ,on } in a region, a dis-
tance threshold θ , and an integer k , let G ⊆ O be the set of candidate
geospatial objects, D ⊆ O be the set of geospatial objects that should
remain visible to users after users perform any of the three naviga-
tion operations according to the zooming consistency and panning
consistency. The ISOS problem aims to efficiently select a subset
S ⊆ G, |S ∪ D | = k, such that

(1) dist (oi ,oj ) ≥ θ for any oi ,oj ∈ S ∪ D, and
(2) Sim(O, S ∪ D) is maximized.



3 POISAM PROTOTYPE
The system architecture is shown in Figure 2, consisting of a geospa-
tial data repository, an indexing module, a query processor module
and a browser module.

3.1 Indexing Module
When the user explores the map utilizing the browser, the query
processor sends a spatial range query based on the current window
to the object index, which is formalized by a region of rectangle. The
indexing module organizes the object database using an R*-tree[1],
which can efficiently solve the spatial range query. The objects that
are in the query range are then sent back to the query processor for
the subsequent selection.

3.2 Query Processor Module
Given the query sent from the browser module, the query processor
finds a region of objects according to the user’s current map window.
The processor invokes the selection algorithms [4] to reduce the
number of objects, and finally the results are sent back to users and
displayed on the map using Google Maps API.

POIsam aims to find the best subset of a given size to represent the
whole data collection. Two algorithms are involved in our POIsam
prototype:

Greedy Algorithm. We select the representative set S of objects
from the whole set O of objects iteratively. In each iteration, we
select the geospatial object with the maximum marginal similarity
increase by using a heap. Then we remove the remaining geospatial
objects that do not satisfy the visibility constraint, i.e., its distance to
the newly-selected geospatial object is less than the given threshold.
The algorithm terminates when k geospatial objects are selected.

One main challenge is how to efficiently find the object with
the maximum marginal similarity increase in each iteration. To
address this challenge, we propose a “lazy-forward” strategy, which
recomputes the marginal increase only for those objects appearing
as the top tuple in the heap, rather than for all geospatial objects. For
those objects whose marginal increases are computed in previous
iterations, their values become outdated, but they can still serve as
upper bound values for the marginal increase in the current round.
Let nc be the number of geospatial objects whose marginal increases
are re-computed in the k iterations. The time complexity of the
greedy algorithm is O (nc · n). In practice, nc is much smaller than n.

SaSS Algorithm When the number of candidates in O is large,
it is time-consuming to obtain a result for SOS problem even with
our proposed Greedy algorithm, because computing the similarities
or testing the Visibility Constraint alone will cost O (n2) time in the
worst case. To tackle this problem, our idea in this approach is to
sample a small set of objects O ′, such that the characteristics of O ′

are similar to those of O . Ideally, if we apply our Greedy Selection
algorithm to objects O ′, the selection result can represent O as well,
while satisfying the Visibility Constraint.

We prove that with a probability of at least 1−δ , our SASS returns
a (1 − ϵ )-approximate solution if we sample |O ′ | objects out of O ,
where |O ′ | can be bounded bymin(

⌈
1
2ϵ 2 ln

2
δ

⌉
, |O |).

The details of the two algorithms are introduced in [4].

3.3 Browser Module
The browser module provides interfaces for users to locate query
windows and view the selected results. It provides interactions with

the map through Google Maps API. Queries are sent from the client
browser to the server by standard HTTP post operations.

When issuing an SOS query, users choose a window of map at
some specific level as their region of interest, and a number k that
indicates the number of objects in the returned result. The query is
then sent to the server for processing. When issuing an ISOS query,
the procedure is similar while the browser also sends the objects
shown in current map to the query processor. After the query is
processed, a set of spatial objects are returned and displayed on the
map. Users can click the objects to browse the detailed information,
and meanwhile the map shows relevant objects that are hidden before
to extend user’s exploration.

4 DEMONSTRATION AND SCENARIOS
In this section, we will demonstrate POIsam based on two real-
world datasets. The first one is Australian’s real estate data [6] which
contains 1.42 million records of sold properties in Australia. Each
property has 36 descriptive attributes (such as price, distance from
the property to the nearest shopping center). The second dataset is a
geo-tagged tweet data crawled using Twitter API, which comprises
1 million records. Each tweet contains coordinates and the text infor-
mation posted by the users and other attributes (such as timestamp
and user’s id).

In our demonstration, (1) we will illustrate the SOS query with
the multidimensional real estate data and show how our SOS query
considers both the representativeness constraint and the visibility
constraint; (2) we will illustrate the ISOS query with the twitter data,
and show how new tweets are generated after user interactions such
as zooming and panning.

4.1 Demonstration I: the real estate data
The system is initialized with four parameters: a default map window
(i.e., maximum and minimum latitudes and longitudes), an integer k ,
a distance threshold θ , and a user-defined attribute set A (i.e., those
factors of properties that the user concerns about). The map window
is directly affected by users’ zooming and panning operations. All
the other parameters can be modified by users from the selection
panel (Figure 3(b)-1).

Specifically, our first demonstration is based on the scenario that
a user, John, is trying to find a property to live in at Melbourne.

SOS Query 1: Exploring suburbs with the map view. John
first selects the suburb view, as he wants to explore the local real es-
tate market at suburb level, and understand how real estate properties
vary from each other across locations. John selects those attributes
that he is concerned about from the selection panel, including price,
public schools, distance to the train station, etc. As shown in Figure
3(a), 10 (the value of k) representative suburbs are shown to John,
visualized with a radar chart on top of the Google Maps. Each axis
of the radar chart corresponds to a selected attribute. As shown in
Figure 3(a), Camberwell has high-ranked public secondary schools,
is close to shopping centers, and is with reasonable distance to the
CBD comparing to other suburbs. When John clicks on Camberwell,
those suburbs (e.g. Hawthorn and Kew) that are similar to and rep-
resented by Camberwell will be visualized as circles on top of the
map, which are rendered with the same colour as Camberwell.

SOS Query 2: Exploring properties with the map view and
the detailed information view. John then selects the property view



(a) Exploring suburbs with the map view (b) Exploring individual properties: (1) selectio panel; (2) map view; (3) detailed informa-
tion view

Figure 3: Demonstration examples based on the real estate data

to explore individual real estate properties. Similar to that in the
suburb level, k representative properties in the current map window
are displayed as k radar charts on top of the map (Figure 3(b)). When
John clicks on a property (p0) that interests him, all the properties
(P = {Pi |i ∈ [1,k]}) that are similar to and represented by p0 will
be displayed as circles on the map, rendered with the same colour
as p0. Simultaneously, a linked view is presented on the screen to
visualize the detailed information of P . As shown in Figure 3(b)-3,
we visualize P as a 2D heatmap. Each row corresponds to a property
(pi ), sorted based on the similarity score (Sim(pi ,p0)) between pi
and p0. Each column represents a user-defined attribute (aj ), which
can be changed by the user from the selection panel (Figure 3(b)-1).
Particularly, the first row represents p0 itself; and the first column
visualizes the similarity score Sim(pi ,p0). The colour of the cell
(pi .aj ) is designed to reflect the similarity of property pi and property
p0 on the attribute aj : p0 lies in the middle of the colour scale (shown
at the top of Figure 3(b)-3); to both ends of the colour scale, pi is less
similar to p0, with the right side of scale meaning pi is better than
p0 (e.g. cheaper, better school rank, etc.) and the left side meaning
the opposite. For example, p2 is highly similar to p0; the differences
between them are that p2 has a larger distance to shopping centres
and a slightly cheaper price.

4.2 Demonstration II: the twitter data
We also demonstrate POIsam based on the twitter data. While the
real estate data is high-dimensional, the main content of each tweet
is textual. We measure the similarity of two tweets with Cosine
Similarity of the keyword vectors. As shown in Figure 1(b), our
demonstration system for the twitter dataset includes a Google Maps
view, a word cloud view and a detailed tweet view. In the Google
Maps view, each representative tweet is mapped as a circle based
on its geographic locations, and the content of some selected tweets
is shown together with the location (Figure 1(b)-1). When the user
clicks on a representative tweet (t0), the detailed textual information
of those tweets (T ) that are similar to t0 will be summarized in the
word cloud view (Figure 1(b)-2), and listed in the detailed tweet
view (Figure 1(b)-3).

In our demonstration, we will ask the audiences to interact with
the map (zooming, panning, etc.), and show them how POIsam
responds to their interactions. To differentiate the new representative

tweets (after user interactions) with the old representative tweets, we
display the new tweets in a different colour.

ISOS Query 1: Zooming. Users zooming in/out on the map will
triage the ISOS query. After users zoom in to a finer granularity,
those tweets that are from the previous map window and are still in
the current map window will be remained; while new representative
tweets will be also added. As a result, tweets that are representative
by one tweet might be split to several groups and represented by
different new tweets. The screenshot is omitted due to space limit.

ISOS Query 2: Panning. POIsam keeps the consistency as users
pan on the map. As a result, those representative tweets from the
previous map window and fit in the new map window will be kept;
and representative tweets in the new region will be calculated.
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