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ABSTRACT

With the proliferation of mobile devices, large collections of geospa-
tial data are becoming available, such as geo-tagged photos. Map
rendering systems play an important role in presenting such large
geospatial datasets to end users. We propose that such systems
should support the following desirable features: representativeness,
visibility constraint, zooming consistency, and panning consistency.
The first two constraints are fundamental challenges to a map ex-
ploration system, which aims to efficiently select a small set of
representative objects from the current region of user’s interest,
and any two selected objects should not be too close to each other
for users to distinguish in the limited space of a screen. We formal-
ize it as the Spatial Object Selection (sos) problem, prove that it
is an NP-hard problem, and develop a novel approximation algo-
rithm with performance guarantees. To further support interactive
exploration of geospatial data on maps, we propose the Interactive
sos (isos) problem, in which we enrich the sos problem with the
zooming consistency and panning consistency constraints. The
objective of isos is to provide seamless experience for end-users to
interactively explore the data by navigating the map. We extend our
algorithm for the sos problem to solve the isos problem, and pro-
pose a new strategy based on pre-fetching to significantly enhance
the efficiency. Finally we have conducted extensive experiments to
show the efficiency and scalability of our approach.
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1 INTRODUCTION

Large collections of geospatial data are becoming increasingly avail-
able. Examples of such data include points of interest data from
online Maps and social media websites (e.g., Yelp and FourSquare),
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geo-tagged photos in social photo sharing websites (e.g., Flickr and
Instagram), geo-tagged micro-blogs (e.g., Twitter), geo-tagged news,
etc. Such data are featured with both geospatial content and other
content, such as texts and photos. It is useful to provide support
for end-users to perform visualized exploration on such geospatial
data on maps. We illustrate the desired features of such systems in
the following example.

Example 1.1. Given a collection of points of interest (POIs), an
end-user would like to browse a small number (denoted by k) of
representative POIs for an area on an online map using her pad.
Ideally, the set of selected POIs can well represent the POIs of the
area (i.e., Representative Constraint), and they should not be too
close to each other so that they will not overlap with each other
on the map (i.e., Visibility Constraint) when shown on the pad
screen. Figure 1 demonstrates Example 1.1, where a small number
of representative POIs are shown to users (Figure 1(b)). The user
may be interested in some POIs, and he may click one to check more
information such as descriptions and user’s voting score. Moreover,
the “hidden” POIs that are represented by the user-viewing POI are
also highlighted (Figure 1(c)) as related recommendations for users
to explore.

The example informally introduces the first goal of this paper.
Goal 1: Efficient Spatial Object Selection (sos)

Given the current region of user’s interest, how to efficiently select a
set S of k objects (among all the spatial objects falling in this region),
so that it meets (i) Visibility Constraint — the distance between any
two objects in S is larger than a given distance threshold θ , and (ii)
Representative Constraint — the aggregated similarity between S
and the whole spatial objects in that region is maximized. We define
a general function (in Section 3.1) which can cope with various
types of data resources and similarity metrics to meet the needs in
different scenarios, as described at the beginning of introduction.

By reviewing the literature in the areas of cartographic selection
and spatial sampling (see Table 1), we find that there have been
some studies [31, 38, 39] taking the visibility constraint into account.
However, none of them considers representativeness except for a
study done by Drosou et al. [16], in which it is assumed that the
representativeness of a spatial object is based on its spatial distance
to other objects, and its proposed solution is built based on the
assumption.

However, for a truly general solution, the representativeness/similarity
definition should be application dependent. For instance, in Exam-
ple 1.1, we could consider both the distance of two POIs and the
semantic similarity of the two POIs. Furthermore, if additional in-
formation, such as the popularity of POI and the importance of
tweets, is available, it should be taken into account when selecting
the set of representative objects.
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(a) Without any selection, it is messy to view
all the POIs.

(b) After objects selection, only few repre-
sentative POIs are shown to users.

Benjamin Steak House
Clubby bi-level steakhouse

4.5 501 reviews

Sparks Steak House
Storied beef emporium 

4.2 346 reviews

The Capital Grille
Upscale chophouse chain 

with clubby look

4.3 248 reviews

(c) The user can click one for more detailed
information, and other “hidden” similar
POIs will also be highlighted.

Figure 1: Spatial Object Selection Example

To this end, we propose the sos problem which for the first time
takes both visibility constraint and representative constraint into
consideration in object selection, and we accept any similarity met-
ric in defining visibility constraint and representative constraint.
Goal 2: Interactive Spatial Object Selection (isos)

The sos problem deals with the object selection problem at the cur-
rent region of user’s interest. To support the objective of exploring
a geospatial dataset, we should provide the interactive exploration
function so that users can interact with the map by performing map
navigation operations, including zoom-in, zoom-out and panning.
As users navigate the map, the proposed visualized exploration
system needs to maintain consistency when selecting a new set of
representative objects for the new map region, as illustrated in the
following example.

Example 1.2. Continue with Example 1.1. The user now would
like to further explore the POI dataset by zooming-in on the map as
illustrated in Figure 2(a)). There are 9 POIs in the regions, denoted
by o1, . . . ,o9. The black nodes are visible to the user. Those spatial
objects that are visible in the current granularity and fall in the
new map region should also be visible in the new map region at a
finer granularity. As a specific example, object o5 should be visible
after zooming in. In addition, objects o3 and o4 become visible after
zooming in. Similarly, when zooming out, the set of spatial objects
that are visible in the coarser granularity should be a subset of the
spatial objects that are visible in a finer granularity as illustrated in
Figure 2(b). When the user pans the map from the current window,
denoted by r1, to a nearby region r2 that overlaps with r1, the objects
appearing in the overlapping area before the movement should also
appear in the region after the movement. As shown in Figure 2(c),
objects o1 and o5 are still visible after the panning.

The consistency constraint with respect to zoom-in and zoom-
out operations is referred to as zooming consistency, and the con-
sistency constraint with respect to panning operation is referred
to as panning consistency. Based on the sos problem, the isos prob-
lem additionally considers the zooming consistency and panning
consistency to provide the seamless experience for end-users to
interactively navigate a map to explore the data.

In order to achieve the aforementioned two goals, we make the
following contributions.

First, we formally introduce four desired features that an in-
teractive visualized exploration system on a map should meet, i.e.,
representative constraint, visibility constraint, zooming consistency
constraint and panning consistency constraint. To the best of our

knowledge, this is the first work that is able to meet all the four
features to achieve an interactive visualization map exploration
system.

Second, we propose the problem of Spatial Object Selection (sos)
considering representative constraint and visibility constraint, and
prove that it is an NP-hard problem. The intractability result moti-
vates us to design approximation algorithms for the sos problem.
We propose a greedy algorithm with performance guarantees and
it has an approximation ratio of 1/8.

Third, we propose the problem of Interactive Spatial Object
Selection (isos) by enforcing the zooming consistency constraint
and panning consistency constraint on top of the sos problem to
support interactive exploration of geospatial data on maps. We
extend the proposed greedy algorithm to address the isos problem.
We further propose a new approach to improve the efficiency of our
algorithm in finding the new set of representative objects to support
interactive exploration in isos, by up to 2 orders of magnitude
(Section 5).

Fourth, to improve the efficiency of sos and isos on large datasets,
we propose to use sampling strategy (Section 6). We prove that it
has a theoretical guarantee, and the experiments show that it only
needs less than 2% of the whole data (which is of size up to 100
million) to achieve a very small error bound (Section 7.3.2).

Finally, we have conducted extensive experiments over three
real-life datasets to evaluate the performance of our proposed algo-
rithms (Section 7). The experimental result shows that our greedy
algorithm is efficient. Our pre-fetching technique further improves
the efficiency of our greedy algorithm for isos by almost 2 orders
of magnitude, and it ensures a very high response speed (usually
0.1 second) for new object selection to cater for zoom-in, zoom-out
and panning operations.
2 RELATEDWORK

Existing Map Services Although visualization of geographical
data, such as POIs, is an important part of online map systems such
as Google Maps and MapQuest, the main focus is to help users find
the result they want, assuming that users know their search inten-
tion and formulate such intention as a query. When working with
queries, existing map services retrieve a subset of spatial objects
based on the user’s (keyword) query, and a record is evaluated as
“good” if it matches user’s intention. Without the userâĂŹs query,
Google Maps chooses objects to be shown on map according to
their weight by default, i.e., those objects that can maximize the



(a) Zooming in (b) Zooming out (c) Panning

Figure 2: Interactive Operations on Map

Table 1: Comparison of closely related work on different aspects

Methods Zooming Consistency Movement Consistency Visibility Constraint Representativeness Similarity Metrics Online
Our Work Yes Yes Yes Yes General Yes
Sarma et al. [14] Yes No No No N.A. No
Konstantin et al. [31] Yes No Yes No N.A. No
DisC [16] No No Yes Yes Distance Yes
Nutanong et al [38] No Yes Yes No N.A. Yes
Mahdian et al. [33] No No No No N.A. Yes
Peng et al. [39] Yes No Yes No N.A. Yes

total weights are selected [14]. Our work is different from existing
map services, because we focus on how to explore a large collection
of geospatial data based on representative samples, when users
have no prior knowledge on the data or do not know exactly what
to search at that moment. Our system can also work with existing
map services as below: on top of all relevant results retrieved by
the map search engine for a user query, our method is employed to
choose the representative ones among all results which are over-
whelming if displaying them all. We believe that this is the first
paper to study the geospatial object selection problem that takes
into account the representativeness of objects to support interactive
visualized exploration. Table 1 summarizes the difference between
our work and closely related work in terms of the aforementioned
consistencies, constraints, similarity metrics adopted and whether
online computation is supported.
Cartographic Generalization and SelectionOurwork is related
to cartographic generalization [19, 40, 45, 50], which is a classic
research topic. One of the challenges in cartographic generalization
is sifting through all of the data available and deciding what to
place on the map at a given zoom level. We next review the recent
studies addressing the challenge.

Sarma et al. study the map thinning problem [14], which is to
determine appropriate samples of data to be shown on each pre-
defined geographical region and zoom level on maps. Konstantin
et al. [31] extend the work [14] by proposing a concept similar to
the visibility constraint defined in our work. Our work differs from
the work [14, 31] in the following two aspects. First, Pre-defined
Granularity & Region Cell vs. Arbitrary Granularity & Region.
The approaches [14, 31] are precomputation-based, and perform an
offline computation of selecting objects for all cells of different zoom
levels. However, in real-world a user’s region of interest may not
match well with any of the pre-defined cells, and thus the selected
objects for those pre-defined cells may not provide a good solution
to our SOS problem. Moreover, the pre-selected objects will not
work if users specify some filtering condition, e.g., names should
contain “restaurant.” Second, our work considers the representative
constraint while the previous ones do not.

Nutanong et al. [38] define the problem of sampling large ge-
ographic dataset falling within a region of user interest for dis-
play, and they propose to utilize SQL statements to achieve several
features like visibility constraint and object distinctiveness (repre-
senting importance of object). However, it does not explicitly ad-
dress the zooming consistency and panning consistency constraints.
Mahdian et al. [33] propose a POI selection problem, which aims
to highlight a subset of POIs with the maximum utility instead
of showing all to users. The utility of each POI is a user-defined
function, and it takes into account the POIâĂŹs relevance and qual-
ity. This is similar to the weight in our problem definition. The
problems in the two studies are different from our problem as our
work considers the representativeness of geospatial objects and
the visibility constraints. Furthermore, we explicitly address the
consistency constraint to support visualized exploration as users
navigate a map.

The map labeling problem [8] is to select a subset from a geo-
graphic dataset to maximize the sum of their importance without
any overlap between the textual labels of selected objects. Peng et
al. [39] develop a filter-and-refine algorithm for the problem. The
map labeling problem is different from our work in that it does not
consider the representativeness of objects.
Interactive Data Exploration Our work is related to studies on
interactive exploration of geospatial data. The existing work sup-
porting Interactive Data Exploration [28] is query-based, where
users interactively issue multiple queries until the user is satisfied
with the result. However, these approaches have different focus
from our work that aims to select representative geospatial objects.
For example, ScalaR [6] is a system that dynamically performs res-
olution reduction by inserting aggregation, sampling or filtering
operations to reduce the size of the result when the expected result
of a DBMS query is too large to be effectively rendered.
Spatial Sampling Our work is related to sampling techniques [10,
32]. Recently Wang et al. [49] utilize map APIs to sample POIs, and
a disk-resident spatial sampling problem is studied in [48]. The
objective of both studies is to achieve accurate statistical aggrega-
tions such as calculating the average price of all sale transactions in



NYC based on a small sample of data, and thus each object should
be sampled with equal probability (without bias). The challenge is
how to take random samples uniformly distributed while the whole
data distribution is unknown. However, our problem and objec-
tive are different from uniform spatial sampling. We aim to choose
representative objects utilizing the similarities between objects.

Spatial sampling is also a classic problem in statistics. Apart from
uniform spatial sampling, other sampling methods include stratified
sampling [36], cluster sampling [37], multistage sampling [9], two-
phase sampling [27], and sequential sampling [42]. These methods
assume the samples are independent and identically distributed
(i.i.d.), and thus they are inapplicable to our problem. Sampling for
spatial autocorrelation (or spatial dependence) [34, 35] measures
how a set of objects tend to be clustered together in space. Sam-
pling for spatial heterogeneity [12, 22, 23] evaluates the uneven
distribution of various densities of each species within an area,
which is typically used in environmental sciences. In these two
problems, samples are assumed to be i.i.d., and the distribution
of entire population and the objects similarities are not utilized
during the sampling; while in our problem both properties need to
be considered.
Query Result Diversification Query result diversity has been
extensively studied to improve the user’s experience (e.g., [3, 16,
20, 41]). Our work is related to DisC [16], which aims to select a
subset of diversified spatial objects that can represent the whole
dataset. However, the algorithm for solving the DisC problem is
dependent on the distance metric, and is not applicable to a general
definition of representativeness based on any similarity function.
Furthermore, we consider the consistency constraint to support
interactive exploration, which is not considered in DisC.
Approximate Query Processing Approximate Query Processing
(AQP) techniques [21] are proposed to achieve low latency for inter-
active data exploration. AQP systems like AQUA [1], BlinkDB [2]
and DICE [30] are based on offline sampling that requires exten-
sive preprocessing cost, and particular techniques are developed
depending on a certain type of AQP needed in a particular context.
Systems that perform online aggregation [25] (e.g. CONTROL [24],
DBO [29], HOP [11], FluoDB [51]) allow users to get iteratively
refined approximate answers until the users terminate the query
execution. AQP studies on spatial data [4, 7, 13] focus on ad-hoc
queries like spatial join, kNN and top-k problems. These AQP tech-
niques are inapplicable to our problem for two reasons: first, like the
Spatial Sampling studies, the AQP systems return aggregations as
the result, which ignores the relationship between objects; second,
since we aim to select a set of objects as the result, users will be
annoyed if the result is iteratively updated during the exploration.
3 PROBLEM STATEMENT

We first introduce two concepts and the Spatial Object Selection
(SOS) problem, which is to support end-users to explore a geospa-
tial dataset on the limited space of a map. Then we introduce the
Interactive Spatial Object Selection (isos) problem.
3.1 Representative and Visibility Constraints

A geospatial object o is represented by a triple o = ⟨λ,ω,A⟩, where
o.λ is the location where o is posted, o.ω is the weight (normalized
in [0, 1]), which can be either computed from some attributes to
represent the popularity or importance of the object, or simply

be assigned with a unit weight, and o.A is a set of attributes of
the object. For example, a geo-tagged tweet is a geospatial object.
The textual content of the tweet is an attribute of the object. A
geo-tagged image is also a geospatial object. The image content is
viewed as an attribute of the geospatial object. In this paper, we
consider a collection of geospatial objects, denoted by O .

It is overwhelming and annoying to display all geospatial objects
to end users in a window of a map. It remains a challenge on how to
select a small set S of geospatial objects to represent the collection
O of geospatial objects, where S ⊆ O .
Representative Constraint Usually, a larger S leads to a more
representative set. However, visualizing toomany geospatial objects
in a window or screen of a map is overwhelming for users to find
out truly useful information. For example in Google Maps, around
500 geospatial objects are displayed to users in a single window [14].
Therefore, we aim to enforce a representative constraint: choose k
objects to represent the set of geospatial objects falling within the
region of user’s interest, where different users can have different
specifications of k. We assume w.l.g. that k is much smaller than
the set of objects falling within the region of interest.

We compute the representative score of an object by its similarity
with other objects. We denote the similarity between two objects
oi ,oj by a function Sim(oi ,oj ) that is computed from the attributes
oi .A and oj .A, and then normalized in [0, 1]. In this paper, we leave
Sim(., .) as a general function. We believe that a general function
is important for us to cope with various types of resources to meet
the needs in different scenarios. For example, we may use textual
similarity and geospatial distance to measure the similarity of two
geo-tagged tweets.

With a given similarity function Sim(oi ,oj ) between objects, we
define the similarity between an object o and a set S of objects by:

Sim(o, S ) = max
o′∈S

Sim(o,o′) (1)

Equation 1 measures how well an object o can be represented by
set S . Intuitively, each object o is represented by the object in S that
is most similar to o. Our proposed solution can also be extended to
handle other aggregation metrics, such as sum or avд. For the ease
of presentation, we only discussmax in this paper.

We next define the representative score of S , namely Score (S ),
by the similarity between S and O , which incorporates the weight
of each object o and is evaluated by

Score (S ) = Sim(O, S ) =
1
|O |

∑
o∈O

o.ω × Sim(o, S ) (2)

Here we combine the weight of o and the similarity between S
and o, which can be viewed as the utility of object o. Equation 2
aims to maximize the total utilities of all the objects, where similar
definition is also used in [33].
Visibility Constraint. Similar to the previous work on query re-
sult diversification and cartographic selection (e.g. [14, 16, 38]), we
also enforce that any two selected objects should not be too close
to each other, so that users can distinguish them on the map.

3.2 Advantages of the Representative Score

Maximizing the representativeness of all the objects. To de-
scribe how well a subset S can represent the whole collection of



geospatial objects O , an intuitive idea is to define how well S rep-
resents each single object o in O (Equation 1). Since the represen-
tativeness of S on an object o1 should be irrelevant to that of S on
another object o2, the representative score of S w.r.t. O is simply
an aggregation of the representative score over each object in O
(Equation 2). Then our objective is to find S that can maximize the
Sim(O, S ).
Maximizing the utility of each object. Instead of treating each
object equally, we combine the weight of each object o and the
representativeness of S on it as the utility of o, such that the im-
portant objects are more likely to be represented. Intuitively, if an
object o can be represented by other objects in S , the similarity
between o and the objects in S should be high. In particular, an
object should always represent itself. That explains why we have
the weight associated with objects in S in Equation 2.
Supporting various kinds of geospatial objects. Since we use
the attributes o.A of the object to measure the similarity, different
types of geospatial objects can be supported by ourmethod. Another
salient feature is that for a specific type of objects, we can vary
the definition of the similarity function for different applications
without ad-hoc algorithms.
Extending map exploration. The efficient exploration feature
introduced in Figure 1(c) can be directly supported by the definition
of Representative Constraint. Each object o that is not shown in
the map (o ∈ O − S) is represented by a selected object o′ (o′ ∈ S),
Sim(o, S ) = Sim(o,o′). It indicates that o′ is the most similar object
to o among all objects shown in the window, and if we view o′ for
details o can be displayed as an extension of map exploration.

A user study in Section 7.2 demonstrates that the representative
score is consistent with the users’ satisfaction.

3.3 Spatial Object Selection (sos) Problem

We are now ready to define the SOS problem.

Definition 3.1. Spatial Object Selection (sos) Problem Given
a set of geospatial objects O = {o1, . . . ,on } in a region of interest,
a distance threshold θ , and an integer k , the sos problem aims to
select a subset of k objects S ⊆ O such that

(1) dist (oi ,oj ) ≥ θ for any oi ,oj ∈ S , and
(2) Sim(O, S ) is maximized.

The first condition guarantees that the users can easily distin-
guish two close geospatial objects on the map. The second condition
ensures that the selected geospatial objects can well represent all
geospatial objects in the region. Note that if users want to spec-
ify filtering condition on the set of objects O , e.g., objects should
contain keyword “president election," existing database querying
engines can be employed to perform the filtering.

Theorem 3.2. The sos Problem is NP-hard.

Proof. We prove the theorem by a reduction from the decision
version of the Minimum Dominating Set problem, which is known
to be NP-hard. The Minimum Dominating Set (MDS) problem aims
to find the minimum number of nodes such that each node in the
graph is either selected or a neighbor of the selected nodes. The
decision problem is to decide whether there is a solution of no more
than k nodes.

Consider a set of geospatial objects, each of which has the same
weight. We assume that for each pair of objects ou and ov we have
Sim(ou ,ov ) ∈ {0, 1}. The distance threshold θ is set small enough
such that any pair of objects fulfills the Visibility Constraint. For
any instance of the Minimum Dominating Set decision (MDSd)
problem, we can build an sos problem to solve it as follows. Given
a graphG (V ,E), we map each node ui to an object oi . If there is an
edge between nodes i and j, we set sim(oi ,oj ) to be 1, otherwise
sim(oi ,oj ) = 0.

(1) Given an MDSd problem, if nodes T are the result, we let
S = {oi |ui ∈ T }, and obviously S is the result of the sos
problem.

(2) Given the result S of the sos problem, if we have |O | =∑
o∈O Sim(o, S ), for each objectowe know that Sim(o, S ) = 1.

According to Equation 1, we have either o ∈ S (where
Sim(o,o) = 1) oro is represented by S (where Simo′∈S (o,o

′) =
1). Let T = {ui |oi ∈ S } be a set of nodes, and T is the result
of the MDSd problem, since for each node u we have either
u ∈ T or (u,v ) ∈ E&v ∈ T (u is dominated by T ).

Therefore, the sos problem is NP-hard. □

3.4 Interactive Exploration on Map

When users navigate the map to explore the geospatial data, they
can perform three different navigation operations: (1) zooming in,
(2) zooming out, and (3) panning.
Zooming in (out). By zooming in (out), the map is displayed with a
finer (coarser) granularity and more (fewer) details in the region are
visible to users (while the center of the map remains unchanged).
Panning. Users can move the displayed region to a new place with
the same granularity.

With regard to the three operations, in order to provide a seam-
less experience for the end-user, the map needs to fulfill the zoom
consistency and the movement consistency constraints.
Zooming Consistency Constraint: for any object o appearing at
any coarse granularity, it should also appear in all finer granularities
of regions containing the location of that object as users zoom the
map.
Panning Consistency Constraint: at a certain granularity, for
any object o appearing at a region, it should also appear in all other
regions which contain the location of this object as user pans the
map.

Next we present how the two consistency constraints affect
the sos problem as users navigate the map. We consider the three
examples shown in Figure 2(a), 2(b), and 2(c), respectively. Each
point in the map is a POI. The set of POIs that are visible to users
are marked with red color. Assume that three objects should be
selected to display to users in the region of interest.

Example 3.3 (Zoom in). Consider the example in Figure 2(a).
Before the zoom-in operation, region r1 is displayed to the user.
There are nine objects in the map region (o1, . . . ,o9), in which o1,
o5 and o9 are visible to users. After the zoom-in operation, region
r2 is displayed to the user. We need to select three objects from
r2 to display. However, since object o5 is visible to the user before
zooming in, it should still be visible. Thus, we need to select two
objects from all objects in r2 excluding o5 to display.



Example 3.4 (Zoom out). Consider the example in Figure 2(b).
Before the zoom-out operation, region r1 is displayed to the user.
There are four objects in the map region (o3, . . . o6), in which o4,
o5 and o6 are visible. After the zoom-out operation, region r2 is
displayed to the user with a coarser granularity. We need to select
three objects from r2 to display. Note that o6 cannot be selected,
since it is not visible in the finer granularity. This means only the
black nodes in r1 can be selected in the new map region. Thus, in
the new map region, we need to select three objects from all objects
in r2 \ r1 and the black nodes in r1.

Example 3.5 (Panning). Consider the example in Figure 2(c). Be-
fore the panning operation, region r1 is displayed to the user. There
are 7 objects in the map region, in which o5 and o9 are visible. After
the panning operation, region r2 is displayed to the user. We need
to select three objects from r2 to display. Note that object o7 cannot
be selected, since it is not visible before panning. Moreover, object
o5 should be selected because it is visible before panning. Thus, we
need to select two objects from the region r2 \ r1 to display.

From the three examples, we observe that in the new map re-
gion (1) some objects must be included into the representative
set, and (2) some objects must be excluded from the representa-
tive set. Specifically, in the new map region, there is a set D of
geospatial objects that must be selected because of the consistency
constraints. In these three examples, the set D are {o5}, {} and {o5},
respectively. There is also a set G of candidate objects only from
which we can select objects into the representative set. In the above
examples, the set G are {o3,o4,o6}, {o1,o2,o3,o4,o5,o7,o8,o9} and
{o1,o3,o10,o11,o12}, respectively.

3.5 Interactive Spatial Object Selection (isos)

Problem

We proceed to introduce the interactive spatial object selection (isos)
problem, which enforces the zooming and panning consistency con-
straints on top of the sos problem to support interactive exploration
of geospatial data.

Definition 3.6. Interactive SpatialObject Selection (isos) Prob-

lem Given a set of geospatial objects O = {o1, . . . ,on } in a region,
a distance threshold θ , and an integer k , let G ⊆ O be the set of
candidate geospatial objects, D ⊆ O be the set of geospatial objects
that should remain visible to users after users perform any of the
three navigation operations according to the zooming consistency
and panning consistency. The isos problem aims to select a subset
S ⊆ G, |S ∪ D | = k , such that

(1) dist (oi ,oj ) ≥ θ for any oi ,oj ∈ S ∪ D, and
(2) Sim(O, S ∪ D) is maximized.

4 PROPOSED ALGORITHM FOR SOS

In this section we present the proposed greedy algorithm for finding
an approximate solution to the SOS problem, and we prove that the
proposed algorithm has an approximation ratio of 1/8.

4.1 A Greedy Algorithm

The intractability result motivates us to develop a greedy algorithm
for the SOS problem. To select a set S of geospatial objects from

the set O of objects in a greedy manner, we need to take both the
representative constraint and the visibility constraint into consid-
eration. To choose representative objects, the geospatial object that
we greedily select should have a high marginal similarity increase.
To impose the visibility constraint, the distance between the new
selection and any previously selected object should be no less than
the given threshold. Specifically, in the proposed greedy algorithm,
we select the representative set of objects iteratively. In each itera-
tion, we select the geospatial object with the maximum marginal
similarity increase. Then we remove the remaining geospatial ob-
jects that do not satisfy the visibility constraint, i.e., its distance to
the newly-selected geospatial object is less than the given threshold.
The algorithm terminates when k geospatial objects are selected.

One main challenge is how to efficiently find the object with the
maximum marginal similarity increase in each iteration. One naive
idea is to compute the marginal increase for each geospatial object.
However, this is prohibitively expensive. To address this challenge,
we utilize a “lazy-forward” strategy based on the following lemma.

Lemma 4.1. (Submodularity.) Let S and T be two sets of geospa-

tial objects, and S ⊆ T . Let v be a newly inserted object. We have

Sim(O, S ∪ {v}) − Sim(O, S ) ≥ Sim(O,T ∪ {v}) − Sim(O,T ).

Proof. See Appendix A. □

Since we select one object in each iteration, Lemma A.1 shows
that the marginal similarity increase of an object (corresponding
to v in Lemma A.1) in current iteration (corresponding to T ) is
not larger than the marginal similarity increase in the previous
iteration (corresponding to S). Therefore, based on this lemma, to
avoid massive recomputation we utilize the “lazy forward” strategy,
which works as follows: For each geospatial object o, we construct
a tuple t = ⟨o,∆(o), Iter ⟩, where ∆(o) = Sim(O, S ∪{o})−Sim(O, S )
is the marginal similarity increase caused by adding object o to
the current representative set S , and Iter records the iteration in
which ∆(o) is computed. We use a max-heap to maintain the tuples
for all spatial objects according to ∆(o). In the i-th iteration, we
check the top tuple t in the heap. If ∆(o) of tuple t is not computed
in this iteration, i.e., t .Iter , i , the value ∆(o) is not up-to-date.
Note that ∆(o) can serve as an upper bound for its real marginal
increase according to Lemma A.1. Therefore, we need to recompute
its marginal increase and push it back to the heap.We keep checking
the top tuple until themarginal increase of the top tuple is computed
in this iteration (t .Iter = i)—The real marginal increase of the
geospatial object of the top tuple is higher than the upper bound
marginal increase of the other geospatial objects. Therefore, the
corresponding geospatial object is picked into the representative
set.

Note that in the “lazy forward” strategy, we recompute the mar-
ginal increase only for those objects appearing as the top tuple in
the heap, rather than for all geospatial objects. For those objects
whose marginal increases are computed in previous iterations, their
values become outdated, but they can still serve as upper bound val-
ues for the marginal increase in the current round. This guarantees
the correctness of the “lazy forward” strategy.

The details of the algorithm are shown in Algorithm 1. It takes as
input a setO of geospatial objects, the size of the representative set
k , and a distance threshold θ . Its output is the set of selected objects



S , and it is initialized as an empty set (line 1). First, the algorithm
initializes the max-heap with tuples (lines 2–3). Specifically, for
each geospatial object o, it pushes a tuple ⟨o, Sim(O, {o}), 0⟩ into
the heap, where Sim(O, {o}) is the marginal similarity increase of
adding o to S (S is empty set now). Then, the algorithm selects
the representative set iteratively (lines 4–12). In each iteration, the
algorithm keeps checking the top tuple from the heap (line 6). If the
marginal increase of the top tuple t is not computed in this iteration,
we need to recompute its marginal increase (line 7) and update t .Iter
(line 8) by the current iteration number. We then push t back to the
heap. When the marginal increase of the top tuple is computed in
current iteration, we select the corresponding object t .o into the
representative set (line 10). In addition, for any geospatial object o′
whose distance to o is smaller than the threshold, we remove the
corresponding tuple from the heap due to the visibility constraint
(lines 11–12). An example is demonstrated in Appendix D.

Algorithm 1: Greedy
input :A set of geospatial objects O , size k , distance threshold θ
output :A subset of objects S

1 S ← ∅;
2 foreach object o in O do

3 Push ⟨o, Sim (O, {o }), 0⟩ into heap H ;
4 while |S | < k and H is not empty do

5 t ← pop the top tuple from heap H ;
6 while t .I ter , |S | do
7 t .∆(o) ← Sim (O, S ∪ {o }) − Sim (O, S );
8 t .I ter = |S |;
9 Push t to heap H ;

10 t ←pop the top tuple from heap H ;
// select o as result

11 S ← S ∪ {t .o };
12 foreach object o′ s.t. dist (o′, o) ≤ θ do

13 remove o′ from H ;
14 return S ;

Complexity It takes O (n) time to recompute the marginal simi-
larity increase for a geospatial object, where n is the number of
geospatial objects in O . Let nc be the number of geospatial objects
whose marginal increases are recomputed in the k iterations. The
time complexity of the greedy algorithm is O (nc · n). In practice,
nc is much smaller than n.

4.2 Approximation Ratio Analysis

We proceed to analyze the approximation ratio of the proposed
greedy algorithm. We first present two lemmas that will be lever-
aged to prove the approximation ratio.

Lemma 4.2. Let S and T be two sets of geospatial objects, and

S ⊆ T . We have

Sim(O, S ) ≤ Sim(O,T ) (3)

Proof. Since S ⊆ T , we have maxo′∈SSim(o,o′) ≤ maxo′∈T
Sim(o,o′). Therefore, we have Sim(O, S ) ≤ Sim(O,T ). □

Lemma 4.3. Let S be a set of geospatial objects that satisfy the

visibility constraint. Let o be a geospatial object and o < S . At most 7

objects in S conflict with o.

Proof. See Appendix B.

With the aforementioned lemmas, we are ready to prove the
approximation ratio of the greedy algorithm.

Theorem 4.4. The Greedy algorithm has an approximation ratio

of 1/8.

Proof. See Appendix C.

5 PROPOSED ALGORITHM FOR ISOS

In this section, we first present the greedy algorithm for the isos
problem, and then propose a pre-fetching strategy to accelerate the
processing for the isos problem.

5.1 A Greedy Algorithm

The isos problem extends the sos problem in two aspects: (1) The
isos problem selects objects from the candidate setG , while the sos
problem selects from all objects in the region of interest. (2) The
selected objects and the pre-determined set of objects D together
form the representative set in the isos problem, while the repre-
sentative set in the sos problem consists of the selected objects
only. We can slightly extend the greedy algorithm to solve the isos
problem.

The main idea of the greedy algorithm is still the same. In each
iteration, we select the geospatial object with the maximum mar-
ginal similarity increase. To make the greedy algorithm work for
the isos problem, we make the following changes: (1) Since the
representative set S must contain all objects in the pre-determined
set D, we initialize the set S with all geospatial objects in D, i.e.,
S ← D in line 1 in Algorithm 1. (2) Because we can only select
geospatial objects from the candidate setG , we initialize the heapH
by only using the objects inG . In line 2 of Algorithm 1, we compute
the marginal increase for each object o ∈ G.

With the two modifications, the greedy algorithm can be used to
find a set of representative geospatial objects for the isos problem.

5.2 Pre-fetching Strategy

We proceed to present the new idea of using pre-fetching to speed-
up the greedy algorithm. When an end-user explores the geospatial
data on the map, she may (1) check the content in a displayed map
region, (2) perform a navigation operation, like zoom-in, zoom-out,
and panning, and then (3) wait for the visualized exploration system
rendering the set of representative geospatial objects on the map.
User may repeat such kind of exploration several times until she is
satisfied with the results. To reduce the waiting time of the user and
provide the user with a seamless browsing experience, we propose
to pre-fetch and pre-compute some useful information while the
user is still in step 1. In our work, we focus on how to utilize the
pre-fetched data to accelerate the greedy algorithm for the isos
problem. We are not solving the problem of predicting the user’s
next region of interest, which is addressed by Leilani et al. [5]. In
fact, this work is complementary to our work, and can be employed
to predict what region of data to pre-fetch.

The main challenges in designing a pre-fetching strategy include
(1) what kind of information should we pre-fetch and pre-compute,
and (2) how the information can be used to accelerate the selection
of representative set.



Figure 3: Zoom-in Figure 4: Zoom-out Figure 5: Panning

To address the aforementioned challenges, we first analyze the
bottleneck of the greedy algorithm. Because the “lazy forward” strat-
egy can greatly speed up the subsequent computation of marginal
similarity increase, the bottleneck of Algorithm 1 is the initial-
ization of the heap. In the initialization, we need to compute the
marginal increase of representative score for each object in G, and
push the tuple for each object into the heap. This initialization takes
O (n · |G |) time, where n is the number of objects in the map region,
and |G | is the number of objects in the candidate set. A natural idea
is that if we can estimate an upper bound for the marginal increase
for each object, we can use the “lazy forward” strategy in the first
iteration in the greedy selection.

Next, we present a pre-fetching strategy to estimate the upper
bound of themarginal increase for each object in initialization of the
heap, in the context of the three navigation operations, respectively.

5.2.1 Pre-fetching for Zoom-in. Recall that after the zoom-in
operation, the new region of interest on the map is inside the old
region of interest. Figure 3 shows a zoom-in example, where rp is
the old region of interest, and rn is a possible new region of interest
after the zoom-in operation.

Let Op be the set of objects in rp , and On be the set of objects in
the new region rn of interest. Let D be the set of pre-determined
geospatial objects in rn according to the zooming consistency con-
straint. To accelerate the greedy algorithm, we estimate the mar-
ginal increase of representative score for each object o in On \ D,
i.e., Sim(On ,D ∪ {o}) − Sim(On ,D) by the following lemma.

Lemma 5.1. Sim(On ,D ∪ {o}) − Sim(On ,D)
≤
∑
o′∈Op Sim(o,o′).

Proof. According to Lemma A.1, we have Sim(On ,D ∪ {o}) −
Sim(On ,D) ≤ Sim(On , {o}). Since On ⊆ Op , we have

∑
o′∈On

Sim(o′,o) ≤
∑
o′∈Op Sim(o′,o). Therefore,

∑
o′∈Op Sim(o,o′) is the

upper bound of the marginal increase for object o. □

According to Lemma 5.1, for any new region of interest rn as
a result of zoom-in from rp , we pre-compute the upper bound of
marginal increase of representative score for every object in Op .
Then, once the zoom-in operation is performed, we can find the
geospatial objects in the new region of interest and obtain their
upper bounds in O (1) time.

5.2.2 Pre-fetching for Zoom-out. Recall that after the zoom-out
operation, the new region of interest on the map must contain the
old region of interest. Figure 4 shows a zoom-out example, where
the region rp is the old region of interest and region rn is one
possible map region after the zoom-out operation. Since rn must
contain region rp , let rA be the union of all possible new regions of
interest.

LetOn be the set of objects in the new region of interest, andOA
be the set of objects in the union of all possible new regions of inter-
est. LetG be the candidate set of geospatial objects in the new region

of interest according to the zooming consistency constraint. To ac-
celerate the greedy algorithm, we estimate the marginal increase
of representative score for each object o ∈ G, i.e., Sim(On , {o}) in
the new map region as follows.

Lemma 5.2. Sim(On , {o}) <
∑
o′∈OA Sim(o,o′)

Proof. According to LemmaA.1, we have Sim(On , {o}) < Sim(OA, {o}).
According to the definition of the representative score, we have
Sim(OA, {o}) =

∑
o′∈OA Sim(o,o′). □

According to Lemma 5.2, we can pre-compute the upper bound
of the marginal increase for each object o in the union of all possible
new regions of interest. Then, once the zoom-out operation is
performed, we can find the objects in the new map region and
obtain their upper bounds of the marginal increase in O (1) time.

5.2.3 Pre-fetching for Panning. Recall that after the panning
operation, the new region of interest has the same size as the old
region of interest on the map. Figure 5 shows a panning example,
where rp is the old region of interest before panning, and rn is one
possible new region of interest after panning. Since rn must overlap
with rp , the union of all possible new regions of interest is rA, as
shown in Figure 5.

LetOn be the set of objects in a new region of interest, andOA be
the set of objects in the union of all possible new regions of interest.
Let G and D be the set of candidate objects and the set of pre-
determined objects according to the panning consistency constraint,
respectively. We estimate the upper bound of the marginal increase
of representative score for each object o ∈ G , i.e., Sim(On ,D∪{o})−
Sim(On ,D) as follows.

Lemma 5.3. For an object o, we draw a square ro centered at o with
a width twice of the old region of interest, as shown in Figure 5. Let

Or be the set of geospatial objects in the overlapped region rA ∩ ro .
We have Sim(On ,D ∪ {o}) − Sim(On ,D) ≤

∑
o′∈Or Sim(o,o′)

Proof. The new region of interest is inside the overlapped re-
gion rA ∩ ro , thus On ⊆ Or . The proof follows the proof for
Lemma 5.2 □

By Lemma 5.3, we can pre-compute the upper bound of marginal
increase of representative score for every object o in OA. Once the
panning operation is performed, we can find the geospatial objects
in the new region and obtain their upper bounds in O (1) time.

6 A SAMPLING EXTENSION

We propose a sampling-based method to improve the efficiency of
our algorithm, which is especially useful when the size of geospatial
objects |O | is large. We prove that with a very high probability this
method returns a solution with a very small error ϵ compared
to the optimal one. We introduce the sampling extension for the
sos problem for simplicity, and similar conclusion can be easily
extended for the isos problem.

6.1 A Sampling Method

When the number of candidates in O is large, it is time-consuming
to obtain a result for sos problem even with our proposed Greedy
algorithm, because computing the similarities or testing the Visi-
bility Constraint alone will cost O (n2) time in the worst case. To



tackle this problem, our idea is to sample a small set of objects O ′,
such that the characteristics of O ′ are similar to those of O . Ideally,
if we apply our Greedy Selection algorithm to objects O ′, the selec-
tion result can represent O as well, while satisfying the Visibility
Constraint. We denote this algorithm by SaSS and it is shown in
Algorithm 2. The challenge is how to determine a proper size of
O ′. We will address this in the next subsection, and we will show
that with a high probability the result of SaSS provides theoretical
guarantees on the error bound of the representative score.

Algorithm 2: Sampling for Spatial Object Selection(SaSS)
input :A set of geospatial objects O , size k , distance threshold θ ,

confidence δ , error tolerance ϵ
output :A subset of objects S

1 m =



1
2ϵ2
ln 2
δ
+ 1
|O |


;

2 Drawm samples O ′ from O randomly;
3 S ←Greedy(O ′, k, θ ) ; // invoking Algorithm 1

4 return S ;

Note that simply sampling k objects as the result of the sos
problem is not desirable due to the following reasons. The random
sampling does not take into account representativeness and vis-
ibility constraints. Even if the visibility constraint can be easily
enforced in the random sampling method as we do in experiments
(Section 7), the sampling results are not representative as shown
in our results. We show in Section 7 that such a random selection
strategy results in a poor representative score.

6.2 Determining Sampling Size

Before the proof of theorem, we first introduce some useful con-
centration inequalities that will be utilized for the proof.

Lemma 6.1. (Hoeffding’s Inequality) [26] Given a set of n random

variables X = x1,x2, · · · ,xn in [0, 1] with a mean µ, for any ϵ > 0,
we have

P

|
1
n

n∑
i=1

xi − µ | ≥ ϵ

≤ 2exp (−2ϵ2n). (4)

Lemma 6.1 provides a general bound for infinite population,
i.e., the number of variables n. In most specific cases, for a finite
population there exists a tighter bound:

Lemma 6.2. (Serfling’s Inequality) [44] Given a set of n random

variables X = x1,x2, · · · ,xn in [0, 1] with a mean µ, for any ϵ > 0
and 1 ≤ k < n, we have

P


max
k≤m≤n−1

|
1
m

m∑
i=1

xi − µ | ≥ ϵ

≤ 2exp (−

2kϵ2

1 − k−1
n

). (5)

Note that both Lemmas 6.1 and 6.2 can provide a confidence
δ . When the error bound ϵ is large, the confidences are close. In
other cases, Equation 5 provides a smaller size for sampling. For
simplicity, we use Equation 4 for the proof, and similar results can
be derived by replacing it with Equation 5.

Note that the Greedy method in Algorithm 2 can be replaced
by any other methods for solving sos problem and we have the
following Theorem:

Theorem 6.3. With probability at least 1−δ , for any approach F
used to solve the sos problem our SaSS returns an (1−ϵ )-approximate

solution w.r.t. the solution computed by F .

Proof. The sos problem aims to maximize 1
|O |
∑
o∈O o.ω ×

Sim(o, S ). Since o.ω ∈ [0, 1] and Sim(o, S ) ∈ [0, 1], we can take
o.ω × Sim(o, S ) as a random variable in [0, 1] w.r.t. object o. We
useOPT to denote the optimal representative score Sim(O, S ) for a
given set of objects O . According to the law of large numbers [18],
whenO is large, we can simply assume thatOPT = 1

|O |
∑
o∈O o.ω×

Sim(o, S ) = µ . Let xi = oi .ω × Sim(oi , S ), and we take Equation 2
into Equation 4: P [|Sim(O ′, S ) −OPT | ≥ ϵ] ≤ δ = 2exp (−2ϵ2 |O ′ |).
So we have: P [|Sim(O ′, S ) −OPT | < ϵ] ≥ 1 − δ , and

|O ′ | =min



⌈
1
2ϵ 2 ln

2
δ

⌉

|O |
(6)

□
Similarly, we can obtain the size of objects to be sampled using

Eq 5, and we have:

|O ′ | =



1
2ϵ 2
ln 2

δ
+ 1
|O |


, (7)

when |O | → ∞ we can see that it is identical to Eq 6.

7 EXPERIMENTS

We conduct extensive experimental evaluation on the efficiency
and effectiveness of our solutions to the Spatial Object Selection
(sos) problem and the Interactive Spatial Object Selection (isos)
problem. We first introduce the experimental setup, and then report
the efficiency of our algorithms and the representative scores, which
reflect the effectiveness of the proposed solutions.

7.1 Experimental Setup

Datasets. We conduct the experiments on two types of real-life
geospatial datasets:

1) Twitter is a geo-tagged tweet dataset crawled using Twitter
API1. We use tweets posted by users in United Kingdom (UK) and
United States (US), denoted by UK and US, which contain up to 2
million and 200million geo-tagged tweets, respectively. Unless spec-
ified otherwise we extract 1 million tweets of UK and 100 million
tweets of US for all experiments except for scalability evaluation
(in Sec. 7.3.4).

2) POI is a Point-of-Interest dataset crawled using Foursquare
API2. Each POI is associated with textual description. It contains
322,006 POIs in Singapore (SG).

For each geospatial object, we randomly set the weight ω in
[0, 1].
Algorithms. For the sos problem, as mentioned in Sections 1 and
2, this is the first work that takes both representative constraint and
visibility constraint into consideration in k-size object selection and
accepts a general definition of the representative score between
selected objects and the whole objects (within a particular region).
Therefore, there exists no previous work for direct comparison.

1https://dev.twitter.com/rest/public
2https://developer.foursquare.com/



Table 2: Parameters

Parameter Range

Query Region Size (∗10−2) 2−2, 2−1, 20, 21, 22

Number of Selected Objects k 60, 80, 100, 120, 140
Distance threshold θ (∗10−3) 1, 2, 3, 4, 5

Zoom-in Size Rin /R (by length) 2−3, 2−2.5, 2−2, 2−1.5, 2−1

Zoom-out Size Rout /R (by length) 21, 21.5, 22, 22.5, 23

Upscale of data size for scalability test 1, 1.25, 1.5, 1.75, 2
Relative Error Bound ϵ (∗10−2) 3, 4, 5, 6,7

Confidence Error δ 0.08, 0.09, 0.1, 0.11, 0.12

We consider a baseline method Random to compare with our
Greedymethod (proposed in Sec. 4.1). Random is a uniform random
selection strategy used in [48, 49], and it is implemented in main
memory. To meet the visibility constraint, we repeatedly pick a
random object o if adding o into the current result does not break
the visibility constraint. Once there are k objects, they are returned
as result. We also compare with four other baselines, which are
introduced in Section 7.2. MAXMIN, MAXSUM [17] and DisC [16]
are methods for selecting the most diverse objects, and K-means
is used for clustering. Note that the results of these four methods
may not fulfill the visibility constraint.
Performance Measurement. For all the methods, we use R-tree
as the spatial index for region queries, which returns all the objects
inside a given query region. We evaluate the performance of all
methods by their runtime, andwe report the runtime after the object
fetching is finished. Specifically, for SaSS, we also study how many
objects are sampled, i.e., |O ′ |/|O |. Given a sampling selection result
S , we can compute its representative score on the whole dataset
O . We report the score differences, i.e., |Score (O, S ) − Score (O ′, S ) |.
This result is to show how well the result on the sampled objects
can represent the whole dataset. Each experiment is repeated 50
times, and the average performance is reported.
Similarity Metric. Note that our approach is able to deal with any
similarity metric depending on the richness of data in particular
application scenarios. For the Twitter and POI datasets, each object
is associated with some keywords. We measure the similarity of
two objects with Cosine Similarity of the keyword vectors.
Query Generation. For the sos problem, we randomly pick an
object from the dataset and generate a square-shape query region
R centered at this object. For the isos problem, each interactive
operation will result in a new region that the user may further
explore. For the Zoom-in operation, we randomly locate a new
square-shape query region Rin that is completely inside the previ-
ous region R. For the Zoom-out operation, we randomly locate a
new square-shape query region Rout that completely covers the
previous region R.
Parameters. Table 2 shows the detailed settings of all parameters,
where the default one is highlighted in bold. By default, we set
the query region R as 0.01 of the size of the whole dataset, which
usually represents a suburb. It is a reasonable setting as most users
explore a suburb at a time. In average, there are about 0.5% objects
of the whole data in a query region of size 0.01, and up to about
15% objects in some dense regions. In each query region, we select
k=100 objects by default out of all the objects. For the visibility
constraint, we set a distance threshold θ as 0.003 of the size of the
query region by length. We set the relative error bound ϵ as 0.05
and the confidence error δ as 0.1 for SaSS. We set Rin as half of

Table 3: User Study Result for sos

Method Greedy Random MaxMin MaxSum DisC K-means
RP Score 0.95 0.89 0.86 0.56 0.78 0.87
User Vote 4.9 3.6 1.6 1.0 2.1 3.0

that of R by length, and set Rout as two times of R by length. For
the panning operation, we randomly locate the new query region
Rpan that intersects with R, and we assume they are of the same
size. We study the impact of overlap ratio of Rpan and R on the
runtime in Section 7.4.1.
Setup. All algorithms are implemented in C++ complied with GCC
4.8.2 and run on Linux with a 2.66GHz CPU and 64GB RAM.

7.2 A User Study on the Representative Score

To demonstrate the usefulness of the representative score function,
we compare with five other selection algorithms, which represent
the best baselines we can come up with, and ask 15 students to
rate the representative quality. We use Euclidean distance as the
similarity metric, which is straightforward to be judged by users,
and we assume each object has the same weight. Note that by
using Euclidean distance as the similarity metric, our objective
function reduces to a statistics criterion calledWeighted Mean of
the Shortest Distances (WMSD) [15, 43, 47], which was introduced
by Van Groenigen et al. [46]. Figure 6 shows the selection results
on the Twitter dataset in UK, where each method selects 30 objects
out of 500. Figure 6(a) shows the original distribution of all the
objects, and the selection result by our proposed Greedy is shown
in Figure 6(b). Figure 6(c) shows a set of randomly selected objects.
Figures 6(d) and 6(e) show the result of k-DIVERSITY problem[17]
denoted by MAXMIN and MAXSUM, and their objective functions
are defined as fMIN (S ) = maxS ⊆O

|S |=k
minoi ,oj ∈S

oi,oj
(1−Sim(oi ,oj )), and

fSUM (S ) = maxS ⊆O
|S |=k

∑
oi ,oj ∈S
oi,oj .

(1 − Sim(oi ,oj )). Figure 6(f) shows

the result of DisC [16] method. Since it does not specify the number
of selected objects k , we tune the parameter radius r carefully until
the size of output is close to k . Figure 6(g) shows the result of k-
means clustering, where for each cluster we select the object which
is the closest to the cluster centroid. Note thatMAXMIN, MAXSUM,
DisC and k-means may not fulfill the visibility constraint, and thus
in this user study we focus on the representative constraint while
ignoring the visibility constraint. Each student is asked to compare
the 500 tweets and the selected tweets by each method in term of
tweets’ content coverage, and gives a score between 1 and 5 for the
representative quality, i.e., how well the selected objects represent
the 500 tweets, where 1 is the worst and 5 is the best.

We find that the results ofMaxMin and DisCmethods are evenly
distributed in space, and the information of original data distribu-
tion is lost. The reason is that these two methods aim to cover all
the objects by circles with radius r , and each object of the original
data (blue pin) is close to the selected data (red pin) for at most r
distance.

The average rating result is shown in Table 3. We can see our
method outperforms other methods. We also compute the represen-
tative score using Equation 2 for the result of each method. We find
that the users’ rating is consistent with the Representative Score



(a) All the objects (b) Our method (c) Random (d) MaxMin (e) MaxSum (f) DisC (g) K-means
Figure 6: Selection Result by Different Methods

Table 4: User Study Result for isos

Method Greedy Random MaxMin MaxSum DisC K-means
Z-in 0.93 0.85 0.72 0.46 0.81 0.83

User Vote 4.8 3.5 1.4 1.0 2.2 3.2
Z-out 0.91 0.83 0.76 0.53 0.78 0.81

User Vote 4.7 3.2 1.5 1.2 1.9 2.5
Panning 0.94 0.87 0.78 0.51 0.81 0.80
User Vote 4.8 3.7 1.6 1.1 2.5 3.1

computed by Equation 2, which indicates the general usefulness of
our quantification on the representative constraint.

We further study the users’ experience on the interactive ex-
ploration, i.e., the users’ satisfaction after zooming in, zooming
out and panning operations. We still compare the algorithms for
selecting 30 objects out of 500. However, to support zooming out
and panning navigations we shrink the window size by half (com-
pared to the previous study). The students are asked to evaluate the
representative quality after each of the three operations. The rating
result is shown in Table 4. We observe that for the isos problem,
the user’s rating is also consistent with the Representative Score.

7.3 Evaluation of Solutions to sos Problem

7.3.1 Comparing Different Methods. In this experiment, we use
default settings for all parameters to compare the performance
of our Greedy and SaSS algorithms with the baseline methods in
solving the problem.

Figures 7 and 8 show the runtime and representative score on two
smaller datasets, UK and POI. Note that the left y-axis of Figure 8
uses logarithmic scale. We notice that the runtime of our proposed
algorithm Greedy is nearly the same with that of Random and is
about 2/3 of that of K-means, while Greedy achieves a much better
representative score than all the other baselines. We also observe
that SaSS is a bit faster than Greedy, and much faster than all the
other baselines, since it works on a small set of sampled objects,
while the score is close to Greedy and better than the others.

The results of K-means, DisC,MAXMIN and MAXSUM do not
fulfill the visibility constraint, and SaSS is the sampling extension of
Greedy and is not significantly better thanGreedy on small datasets.
Therefore for the rest experiments on the two small datasets, we
only show the results of Greedy and Random on UK and POI. We
evaluate SaSS on US, the larger dataset, on which other methods
including Greedy are very slow.

7.3.2 Varying Sampling Parameters. This experiment is to study
how the sampling parameters δ and ϵ affect the performance. The
experiment is conducted on the large dataset US, and the results
are shown in Figures 9 and 10. We only show the results for SaSS
and Random since all the other methods are much more slower,
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Figure 8: Comparing Different Methods on POI

among which the fastest algorithm, Greedy, is slower than SaSS by
an order of magnitude. We observe that for both errors the ratio of
sampled objects increases when the errors increase, and it is shown
from Figure 9(b) that at most 2% of objects suffice to approximately
solve the sos problem. We also observe from Figures 9(a) and 10(a)
that the runtime decreases, because the number of candidate objects
decreases. Last, the relative score differences are always less than
0.01 when we vary θ or ϵ , which indicates that using sampled data
only slightly lose the representativeness.
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Figure 9: Varying ϵ on US
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Figure 10: Varying δ on US

7.3.3 Varying theQuery Region Size. This experiment is to study
how the query region size affects the performance of the proposed
approach. The default region 20 indicates a region of 1% size of a
country (US, UK) by length, which is roughly a city. From the result
shown in Figure 11 we find the runtime of the proposed approach
increases almost linearly when the query region size increases. This
is because for a larger query region size, more objects are considered



as the input of our algorithms, leading to more runtime. We do not
show the runtime of Greedy on US as it is 3 orders of magnitude
slower than SaSS. It is because SaSS is based on sampled objects,
while Greedy works on all objects.
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Figure 11: Varying query region size
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Figure 12: Varying scalability on Twitter

7.3.4 Scalability Test. Last, we study the scalability of our pro-
posed algorithms by varying the data size. We varyUK dataset from
1 million to 2 million and US from 100 million to 200 million. It is
observed from Figure 12(a) that the runtime of Greedy generally
increases w.r.t. the size of the dataset. Since the tweets are from
one country, when the number of objects increases, the density of
the objects increases in general. Since we fix the query region size,
a large dataset usually induces more objects as input and thus the
runtime increases. However, we observe from Figure 12(b) that the
runtime of SaSS only changes slightly as we vary the number of
objects. It is because SaSS is based on a certain number of sampled
objects. When parameters δ and ϵ are fixed, varying the size of
dataset from 100M to 200M does not change the number of sampled
objects significantly.

Other experiments of sos problem are reported in Appendix E.
7.4 Evaluation of solutions to isos Problem
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This experiment is to study the performance of our solution to
solve the Interactive Spatial Object Selection (isos) problem. In
particular, we need to consider the response time for three interac-
tive operations: Zoom-in, Zoom-out and Panning. We denote our
greedy algorithms for each of the three operations by Greedy-in,
Greedy-out and Greedy-pan, and they are compared with the algo-
rithms using pre-fetching (proposed in Sec. 5), which are denoted
by Pre-in, Pre-out and Pre-pan respectively.

First of all, we record the runtime for Pre-in, Pre-out and Pre-pan
using default settings for all parameters, and the result is shown

in Figure 13. We find that the pre-fetching technique improves the
efficiency of Greedy-in, Greedy-out and Greedy-pan by almost 2, 1
and 1 order of magnitude respectively, which is very significant.

In the remaining experiments, we deploy the sampling enhanced
greedy algorithm, namely SaSS on the large dataset US for the
three operations, and they are denoted by SASS-in, SASS-out and
SASS-pan.
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UK

7.4.1 Zooming Scale and Panning Overlap Study. Figure 14(a)
presents the performance result w.r.t. a varying zoom-in scale from
2−3 to 2−1. We find that the runtime of Greedy-in scales linearly
while Pre-in scales sub-linearly; also the pre-fetching method helps
improving the performance of greedy method by almost 2 orders of
magnitude. The runtime is less than 10ms for all cases, providing
a seamless user experience in interactive exploration. A similar
observation is made for the zoom-out case (Figure 14(b)). Last, we
study how the overlap rate between two regions before and after
the panning operation affects the runtime of our method. As shown
in Figure 14(c), we have the following observations: (1) when the
overlap rate is small, the pre-fetching method can improve the
performance by 2 orders of magnitude; (2) when the rate increases
to [80%-100%], the significance of pre-fetching reduces accordingly.

Other experiments of isos problem are reported in Appendix F.

8 CONCLUSIONS

We have developed an interactive visualized exploration system for
geospatial data, which took representativeness, visibility, zooming
consistency, and panning consistency into consideration. We first
proposed the sos problem to select top-k representative objects
from the current region of interest, and any two selected objects
should not be too close to each other for users to distinguish in the
limited space of a screen. We proved that it is an NP-hard problem,
and developed an approximation algorithm with performance guar-
antees. To provide a seamless experience for users to interactively
explore the data when navigating the map, we formally defined the
isos problem, and proposed a pre-fetching solution on top of our ap-
proximation algorithm to improve the efficiency by almost 2 orders
of magnitude. We further enhanced our efficiency for large datasets
by a sampling technique with theoretical guarantee. Experiments
demonstrated the efficiency and scalability of our approach.
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A PROOF OF LEMMA 4.1

Lemma A.1. (Submodularity.) Let S and T be two sets of geospa-

tial objects, and S ⊆ T . Let v be a newly inserted object. We have

Sim(O, S ∪ {v}) − Sim(O, S ) ≥ Sim(O,T ∪ {v}) − Sim(O,T ).

Proof. We first prove that

Sim(o, S ∪ {v}) − Sim(o, S ) ≥ Sim(o,T ∪ {v}) − Sim(o,T ).

We consider the following cases:
Case 1: Sim(v,o) ≤ Sim(o, S ), Sim(v,o) ≤ Sim(o,T ). Then

Sim(o, S ∪ {v}) = Sim(o, S ) and Sim(o,T ∪ {v}) = Sim(o,T ).
Case 2: Sim(v,o) > Sim(o, S ), Sim(v,o) ≤ Sim(o,T ). Then

Sim(o,T ∪ {v}) − Sim(o,T ) = 0 and Sim(o, S ∪ {v}) − Sim(o, S ) > 0.
Case 3: Sim(v,o) > Sim(o, S ), Sim(v,o) > Sim(o,T ). In this

case, Sim(o, S ∪ {v}) = Sim(o,v ) and Sim(o,T ∪ {v}) = Sim(o,v ).
Since Sim(O, S ) ≤ Sim(O,T ), we have Sim(o,v ) − Sim(O, S ) ≥
Sim(o,v ) − Sim(O,T ).

Since Sim(O, S ) = 1
|O |
∑
o∈O o.ω×Sim(o, S ), the lemma is proved.

□

B PROOF OF LEMMA 4.4

Lemma B.1. Let S be a set of geospatial objects that satisfy the

visibility constraint. Let o be a geospatial object and o < S . At most 7

objects in S conflict with o.

Proof. If an object v ∈ S conflicts with o, then v must be inside
the circle with a radius θ centered at o. Since S satisfies the visibility
constraint, any two objects in S do not conflict with each other, i.e.,
dist (v1,v2) > θ for v1,v2 ∈ S . Thus, the circle with a radius of θ
centered at o can cover at most 7 objects from S , which is illustrated
in Figure 15. Note that o is at the position of o1. □
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Figure 15: Conflict Objects Example

C PROOF OF THEOREM 4.5

Theorem C.1. The Greedy algorithm has an approximation ratio

of 1/8.

Proof. Let S∗ = [v∗1 , · · · ,v
∗
k ] be the optimal set of k objects

with maximum score. Let S = [v1, · · · ,vk ] be the set of k selected
by Greedy. We use ∆(v |S ) = Sim(O, S ∪ {v})−Sim(O, S )) to denote
the increase of the score brought by adding v into S . According to
Lemma 4.2 and Lemma A.1, we have

Sim(O, S∗) ≤ Sim(O, S∗ ∪ S )

= Sim(O, S ) +
k∑
j=1

∆(v∗j |S ∪ {v
∗
1 , · · · ,v

∗
j−1})

≤ Sim(O, S ) +
∑

v∗∈S∗
∆(v∗ |S ) (8)

Let v∗ be an object in S∗ and θ be the distance threshold. For an
object o, we refer to the circle with a radius of θ centered at o as
the circle. We consider the following cases:

Case 1: Object v∗ does not fall into the circle of any object in S,
i.e., dist (v∗,v ) > θ for any v ∈ S .

When selecting the k-th object in S ,v∗ also satisfies the Visibility
Constraint. Since S is greedily selected, w have

Sim(O, S ) − Sim(O, Sk−1) ≥ ∆(v∗ |Sk−1),

where Sk−1 = [v1, · · · ,vk−1].
According to Lemma 4.2, we have ∆(v∗ |Sk−1) ≥ ∆(v∗ |S ). Then

we can derive Sim(O, S ) − Sim(O, Sk−1) ≥ ∆(v∗ |S ).
Case 2: Objectv∗ does not fall into the circles of objectsv1, · · · ,vi ,

but falls into the circle of vi+1, i.e., dist (v∗,vj ) > θ for j ∈ [1, i],
and dist (v∗,vi+1) ≤ θ .

When selecting the object vi+1, v∗ satisfies the visibility con-
straint. Since Si+1 is greedily selected, we have

Sim(O, Si+1) − Sim(O, Si ) ≥ ∆(v∗ |Si )

According to Lemma 4.2, we have ∆(v∗ |Sk−1) ≥ ∆(v∗ |S ). Then
we can derive Sim(O, Si+1) − Sim(O, Si ) ≥ ∆(v∗ |S ).

From the two cases, we can see that for each object v∗ ∈ S∗,
we can find an vi ∈ S such that v∗ and vi are conflicted and
Sim(O, Si+1) − Sim(O, Si ) ≥ ∆(v∗ |S ). Since S∗ satisfies the visi-
bility constraint, according to Lemma B.1, we have

∆(v∗ |Si ) ≤ 7(Sim(O, S1) − Sim(O, S0) + · · ·

+ Sim(O, S ) − Sim(O, Sk−1))

= 7Sim(O, S )

From Equation 8, we have

Sim(O, S∗) ≤ Sim(O, S ) + 7Sim(O, S ) = 8Sim(O, S ) (9)

Thus, the Greedy has an approximation ratio of 1/8. □

D EXAMPLE OF GREEDY ALGORITHM

Example D.1. Consider the example shown in Figure 16. The
collection of geospatial data comprise six geospatial objects o1,o2,
o3,o4,o5 and o6. The similarity between any two objects is given
in the table on the right side. We assume that every object has a
weight of 1. We want to select a set of two geospatial objects to be
visualized.

The algorithm first initializes the heap by computing the mar-
ginal increase of each object. For example, the marginal similarity
increase of adding object o1 to S = ∅ is

∆(o1, S ) = (1 + 0.9 + 0.2 + 0.5 + 0 + 0) − 0 = 2.6

The status of the heap after the initialization is shown in Fig-
ure 17(a).



Figure 16: Example for the greedy algorithm.

<o1, 2.6, 0>

<o2, 2.2, 0>

<o3, 2.3, 0>
<o4, 2.5, 0>

Figure 17: Status of the max-heap.

In the first iteration, the top tuple in the heap is t = ⟨o1, 2.6, 0⟩.
since t .Iter = 0, the marginal increase of o1 is computed in this iter-
ation. Therefore we select o1 into the representative set S . Moreover,
we need to remove all objects that conflict with o1 from the heap
due to the visibility constraint. We use a dashed circle to denote the
region in which the objects conflict with o1. Since dist (o1,o2) < θ ,
dist (o1,o5) < θ , o2 and o5 are removed from the heap. There are
only three tuples left in the heap. The status of the heap is shown
in Figure 17(b).

In the second iteration, the top tuple in heap is t = ⟨o4, 2.5, 0⟩,
and its marginal increase is not updated in this iteration. Therefore
we need to recompute the marginal increase as follows:

∆(o3, S )

= (1 + 0.9 + 1 + 0.9 + 0 + 0) − (1 + 0.9 + 0.2 + 0.5 + 0 + 0)
= 1.2

(10)

Similarly, we next recompute the marginal increase of o4 as

∆(o4, S )

= (1 + 0.9 + 1 + 0.9 + 0 + 0) − (1 + 0.9 + 0.2 + 0.5 + 0 + 0)
= 1.2

(11)

In this iteration, we have recomputed the marginal increase for two
objects, and the status of the heap is shown in Figure 17(c). Note that
since the current upper bound for object o6 is smaller than that of
the other two objects, its marginal increase will not be recomputed.
With the “lazy forward” strategy, we prune one recomputation in
this iteration. Then o4 is selected into the heap since it has the
maximum marginal increase. Now we have successfully selected
two objects into the representative set.

E ADDITIONAL EVALUATION OF SOLUTIONS

TO SOS PROBLEM

E.1 Varying the Number of Selected Objects k
This experiment is to study how the number of selected objects,
i.e. k , affects the performance. It can be observed form Figure 18
that, when k increases the runtime of all algorithms increases. It is
because more rounds of iteration are needed for a large k .
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Figure 18: Varying k

E.2 Varying the Distance Threshold
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Figure 19: Varying distance threshold θ

Figure 19 shows the effect of distance thresholds θ on the per-
formance. We observe that the runtime of both algorithms stays
stable regardless of the choices of distance threshold.

F ADDITIONAL EVALUATION OF SOLUTIONS

TO ISOS PROBLEM

F.1 Varying the Query Region Size
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Figure 20: Varying query region size

As we can see from Figure 20, each method’s performance keeps
stable when the region size increases, and our pre-fetching method
significantly reduces the runtime by 3, 1 and 2 orders of magnitude
for Zoom-in, Zoom-out and Panning operations, respectively.

F.2 Varying the Number of Selected Objects k
Figure 21 shows that the runtime for each operator increases when
k increases. Also, pre-fetching techniques help improve the perfor-
mance up to 2 orders of magnitude.

F.3 Varying the Visibility Constraint
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Figure 21: Varying k
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Figure 22: Varying distance threshold θ

Figure 22 shows similar trends with its counterpart in addressing
the sos problem.

F.4 Scalability Test
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Figure 23: Varying scalability

Figure 23 shows the runtime while we vary the size of datasets,
and we observe similar trends as those in the sos problem.
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