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With the proliferation of geo-positioning and geo-tagging techniques, spatio-textual objects that possess both
a geographical location and a textual description are gaining in prevalence, and spatial keyword queries that
exploit both location and textual description are gaining in prominence. However, the queries studied so far
generally focus on finding individual objects that each satisfy a query rather than finding groups of objects
where the objects in a group together satisfy a query.

We define the problem of retrieving a group of spatio-textual objects such that the group’s keywords cover
the query’s keywords and such that the objects are nearest to the query location and have the smallest inter-
object distances. Specifically, we study three instantiations of this problem, all of which are NP-hard. We
devise exact solutions as well as approximate solutions with provable approximation bounds to the problems.
In addition, we solve the problems of retrieving top-k groups of three instantiations, and study a weighted
version of the problem that incorporates object weights. We present empirical studies that offer insight into
the efficiency of the solutions, as well as the accuracy of the approximate solutions.
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1. INTRODUCTION

With the proliferation of geo-positioning techniques, such as GPS or techniques that
exploit the wireless communication infrastructure, accurate user location is increas-
ingly available. Similarly, increasing numbers of objects are available on the Web that
have an associated geographical location and textual description. Such spatio-textual
objects include Web content that represents stores, tourist attractions, restaurants,
hotels, and businesses.

This development gives prominence to spatial keyword queries [Cao et al. 2012b;
Chen et al. 2006, 2013; Cong et al. 2009; De Felipe et al. 2008]. A typical such query
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takes a location and a set of keywords as arguments and returns the single spatio-
textual object that best matches these arguments.

We observe that user needs may exist that are not easily satisfied by a single object,
but where groups of objects may combine to meet the user needs. Put differently, the
objects in a group collectively meet the user needs. For instance, consider a tourist who
is on vacation in an unfamiliar city. She wishes to have dinner at a Japanese restaurant,
do some shopping, and have a drink in a bar near her hotel. For convenience, she prefers
locations within walking distance of each other. Traditional spatial keyword queries
return a single object which does not meet the tourist’s needs. Rather, a query that
returns a group of objects that together meet her needs is called for. As another example,
an organizer wishes to assemble a team of helpers for a particular volunteer task. The
helpers must together possess the capabilities required for successful completion of the
task. This requires that the helpers should be close to the location of the organizer and
close to each other as well.

To address the need for collective answers to spatial keyword queries as indicated
in the examples, we assume a database of spatio-textual objects and then consider the
problem of how to retrieve a group of spatio-textual objects that collectively meet the
user’s needs, given as a location and a set of keywords: (1) the textual description of
the group of objects cover the query keywords; (2) the objects are close to the query
point; and (3) the objects in the group are close to each other.

Specifically, given a set of spatio-textual objects D and a query q = (λ,ψ) where λ is
a location and ψ is a set of keywords, we consider three instantiations of the spatial
group keyword query. It turns out that the subproblems corresponding to the three
instantiations are all NP-hard.

(1) We aim to find a group of objects χ that cover the keywords in q such that the sum
of their spatial distances to the query is minimized.

(2) We aim to find a group of objects χ that cover the keywords in q such that the sum
of the maximum distance between an object in χ and q and the maximum distance
between two objects in χ is minimized.

(3) We aim to find a group of objects χ that cover the keywords in q such that the sum
of the minimum distance between an object in χ and q and the maximum distance
between two objects in χ is minimized.

The first subproblem can be reduced from the weighted set cover problem. We pro-
pose a greedy algorithm that provides an approximate solution to the problem. This
algorithm utilizes a spatial-keyword index such as the IR-tree [Cong et al. 2009] to
prune the search space, and has a provable approximation bound. In some cases, the
number of keywords in a query q may not be large. For such cases, we also propose
an exact algorithm that explores the search space of the keywords, rather than enu-
merating the combinations of objects in the database. In particular, it uses dynamic
programming to generate the optimal group. We also utilize a spatial-keyword index
to further improve the performance of the exact algorithm by exploiting a series of
pruning strategies.

The second subproblem can be reduced from the 3-SAT problem. We develop two
approximation algorithms based on a spatial-keyword index with provable approxima-
tion bounds. The first approximation algorithm has an approximation ratio of 3, while
the second an approximation ratio of 1.8. We also develop an exact algorithm that ex-
ploits a spatial-keyword index to prune the search space. As shown in the experimental
study, our exact algorithm consistently outperforms the recently proposed best-known
algorithm for the same problem [Long et al. 2013].
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The third subproblem can be reduced from the 3-SAT problem as well. We develop an
approximation algorithm that has an approximation ratio of 3 and an exact algorithm
based on a spatial-keyword index enhanced with several pruning strategies.

In order to provide users with more options, for all three subproblems, we propose
to find the top-k groups covering all the query keywords and ranked according to their
costs. When a user is not satisfied with the returned top-1 group of objects, returning
more groups may better satisfy the user’s needs. We extend the exact algorithms of the
three subproblems to answer the top-k spatial group keyword queries.

Finally, we also study a weighted variant of the spatial group keyword query, where
we assume that the objects have weights. In the original query, the cost function is
computed only based on distances, and the objects are treated equally. The weighted
spatial group keyword query also takes into account object weights when computing
the cost of a group. The weight of an object can be a user-contributed rating (e.g.,
Zagat1 has huge amounts of user-contributed restaurant ratings), or it can be the text
relevance of the object to the query. For example, an object close to the query location
but with a low rating may be less preferred by users than a further-away object that
is highly rated. The text relevance of an object to the query can be computed using
any information retrieval model, such as the language model [Zhai and Lafferty 2004].
We study the weighted variant of all three instantiations of the spatial group keyword
query.

The rest of the article is organized as follows. Section 2 formally defines the problem
and establishes its computational complexities. Section 3 reviews the IR-tree index-
ing structure utilized in the article. Section 4 presents an approximate algorithm and
several exact algorithms for the first subproblem, Section 5 presents two approximate
algorithms and an exact algorithm for the second subproblem, and Section 6 presents
an approximate algorithm and an exact algorithm for the third subproblem. Section 7
presents the algorithms for the top-k spatial group keyword query, and Section 8 in-
troduces algorithms for the weighted version of the spatial group keyword query. We
report on empirical studies in Section 9. Finally, we cover related work in Section 10
and offer conclusions and research directions in Section 11.

2. PROBLEM STATEMENT

Let S be a set of keywords. The keywords may capture user preferences or required
project partner capabilities, depending on the application. Let D be a database consist-
ing of m spatio-textual objects. Each object o in D is associated with a location o.λ and
a set of keywords o.ψ , o.ψ ⊂ S, that describes the object (e.g., the menu of a restaurant
or the skills of a possible project partner).

Definition 2.1 (Spatial Group Keyword Query). A spatial group keyword (SGK)
query q is of the form 〈q.λ, q.ψ〉, where q.λ is a location and q.ψ is a set of keywords.
It finds a group of objects χ , χ ⊆ D, such that ∪r∈χr.ψ ⊇ q.ψ and such that Cost(χ ) is
minimized.

Definition 2.2 (Feasible Group). Given an SGK query q, if the union of the keywords
of the objects in a group can cover all the keywords in q.ψ , we call such a group a feasible
group or a feasible solution.

We proceed to present cost functions. Given a set of objects χ , a cost function has two
weighted components, gives as

Cost(q, χ ) = αC1(q, χ ) + (1 − α)C2(χ ), (1)

1http://www.zagat.com/.
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where C1(·, ·) is dependent on the distance of the objects in χ to the query object and
C2(·) characterizes the inter-object distances among the objects in χ . This type of cost
function is capable of expressing that the result object should be near the query location
(C1(·, ·)), that the result objects should be near to each other (C2(·)), and that these two
aspects are given different weights (α).

Many functions could be used for C1(·, ·) and C2(·). In order to characterize the dis-
tance between the group χ and the query q, we can compute the minimum, maximum,
and total distance of all the objects in χ to q. For computing C2(·), we consider the
diameter of χ , that is, the maximum distance between each pair of objects in χ . Con-
sequently, we obtain the following combinations as our cost functions.

(1) Cost(q, χ ) = ∑
o∈χ Dist(o, q);

(2) Cost(q, χ ) = α maxo∈χ (Dist(o, q)) + (1 − α) maxo1,o2∈χ (Dist(o1, o2));
(3) Cost(q, χ ) = α mino∈χ (Dist(o, q)) + (1 − α) maxo1,o2∈χ (Dist(o1, o2));
(4) Cost(q, χ ) = α

∑
o∈χ Dist(o, q) + (1 − α) maxo1,o2∈χ (Dist(o1, o2));

(5) Cost(q, χ ) = maxo1,o2∈χ (Dist(o1, o2)).

Function (5) only considers the inter-distances between each pair of objects in the
group, and it turns out to be the mCK query which has been studied already [Guo
et al. 2015; Zhang et al. 2009, 2010]. We believe the following four instantiations of
the cost function Cost(q, χ ), that correspond to cost functions (1)–(4), have meaningful
applications.

Cost function (1). The cost function, called SUM, is the sum of the distance between
each object in χ and the query location. SUM may fit with applications where the user
needs to return to the query location in-between visiting each object. For example, the
user wants to rest in the hotel in-between going to the gym and the theater.

Cost function (2). The first term in this cost function, called MAX+MAX, is the
maximum distance between any object in χ and the query location q, and the second
term is the maximum distance between two objects in χ (this can be understood as the
diameter of the result). This cost function may be used when the users would like to
visit result objects one by one, without returning to the query location in-between.

Cost function (3). The first term in this cost function, called MIN+MAX, is the mini-
mum distance between any object in χ and the query location q, and the second term is
the maximum distance between any two objects in χ . This function is preferable when
users expect the nearest object in a result group to be close to the query location.

Cost function (4). The first term in this cost function, called SUM+MAX, is the total
distance between all objects in χ and the query location q, and the second term is the
maximum distance between any two objects in χ . This cost function is preferable in
scenarios such as that of finding helpers for a task if the helpers will meet often at the
organizer’s location and will visit each other as well.

The following theorem demonstrates the hardness of answering the spatial group
keyword query.

THEOREM 2.3. The problem of answering the spatial group keyword query using any
of the four types of cost functions is NP-hard.

PROOF.

(1) We first consider the SUM cost function. We prove the theorem by a reduction from
the weighted set cover problem. An instance of the weighted cover problem consists
of a universe U = {1, 2, . . . , n} of nelements and a family of sets S = {S1, S2, . . . , Sm},
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where Si ⊆ U and each Si is associated with a positive cost CSi . The problem is
to find a subset F of S such that ∪Si∈F Si = U and such that its cost

∑
Si∈F (CSi ) is

minimized.
To reduce this problem to that of answering the SUM spatial group keyword,

we observe that each element in U corresponds to a keyword in q.φ, that each Si
corresponds to a spatial object oi containing a set of keywords, and that the weight
of Si is dist(q, oi), that is, the distance between the query and object oi. It is easy
to show that there exists a solution to the weighted set cover problem if and only if
there exists a solution to query q.

(2) Considering next the MAX+MAX cost function, we prove the theorem by a reduction
from the 3-SAT problem. An instance of the 3-SAT problem consists of � = C1 ∧
C2, . . . ,∧Cl, where each clause Cj = xj ∨ yj ∨ zj , and {xj, yj, zj} ∈ {e1, ē1, e2, ē2,
. . . , en, ēn}. The decision problem is to determine whether we can assign a truth
value to each of the literals (e1 through en) such that � is true.

We reduce this problem to an instance of the problem of answering the MAX+MAX
spatial group keyword query (with α = 0.5), which is to decide whether there exists
a group with cost value at most C. The reduction is inspired by the proof for the
hardness of the multiple-choice cover (MCC) problem [Arkin and Hassin 2000] (that
is different from our problem).

Consider a circle with diameter d and with the query point q as its center, and let
each variable ei correspond to a point in the circle, while its negation ēi corresponds
to the diametrically opposite on the circle. The distance between ei and ēi is d. We
set d = 2

3 (C + 2ε), where ε > 0. We also set another value d1 = 2
3 (C − ε), such that

d > d1 and we can set ε to be a very small value to make sure that d is sufficiently
close to d1; thus, the distance between any two points corresponding to different
variables can be no larger than d1.

Each set Si (i ∈ [1, n]) contains a pair of points ei and ēi, and the two points
contain a distinct keyword in q.ψ . Each set Sj ( j ∈ [n + 1, n + l]) contains each
triple of points corresponding to a cause Cj−n, and they contain a distinct keyword
in q.ψ . Thus, to cover all keywords in q.ψ , a query result of q must contain one
point from each Si (i.e., ei and ēi) and must contain at least one point from each Sj
(corresponding to clause Cj−n).

Given this mapping, we can see that if there exits a truth assignment for �, we
can find a group χ for the MAX+MAX SGK query. In this group, all the keywords
in q are covered, and the cost can be computed as Cost(q, χ ) = maxo∈χ Dist(o, q) +
maxoi ,o j∈χ Dist(oi, o j) = d

2 +max Dist(oi, o j), oi, o j ∈ χ , which indicates that a feasible
solution χ with cost at most d

2 + d1 = C exists. On the other hand, if there exists
a subset of points on the circle whose diameter is at most d covering all the query
keywords, then there exists a truth assignment for the instance �. This completes
the proof.

(3) The proof for the MAX+MAX SGK query is applicable to the MIN+MAX SGK query
by replacing maxo∈χ Dist(o, q) with mino∈χ Dist(o, q).

(4) Similar to the proof for the MAX+MAX and MIN+MAX SGK queries, we also reduce
the 3-SAT problem to that of answering the SUM+MAX SGK query. According to
this mapping, the group must contain exactly n point and thus, for every group,
the aggregated distance of all the points to the query point (the centerpoint in the
mapping) is the same.

In the article, we consider answering the SUM, MAX+MAX, and MIN+MAX queries;
the SUM+MAX query is left for future work. Given an SGK query, when there are mul-
tiple optimal groups of objects, we choose one group randomly. For ease of presentation,
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we disregard parameter α in the cost functions in the rest of the article. However, the
proposed algorithms remain applicable when α is enabled. The parameter affects the
performance bounds of the approximation algorithms, which will be explained in later
sections.

The prior discussion only focuses on finding the optimal group. However, it is attrac-
tive to be able to return several results, thus providing users with more options. Based
on Definition 2.1, we define the top-k spatial group keyword query.

Definition 2.4 (Top-k Spatial Group Keyword Query). A top-k spatial group key-
word (kSGK) query q is of the form 〈q.λ, q.ψ, k〉, where q.λ and q.ψ are as defined
before, and k is the number of groups to be retrieved. It finds k groups of objects (possi-
bly with common objects) Xk = 〈χ1, . . . , χk〉, where χi (1 ≤ i ≤ k) is a feasible group of q,
such that any feasible group χm �∈ Xk has a cost that exceeds that of any group χi ∈ Xk.

We further propose to provide support for object weights in the spatial group keyword
query. The object weights may come from different sources and may capture different
aspects of the objects. For example, they can capture the popularity as measured by
numbers of check-ins, they can be user ratings, or can be the text relevance to the
query keywords. This support for object weights is relevant because users may find
such ratings important, in addition to the distances to the query. For example, a user
may prefer to have dinner at a further-away restaurant with a high rating rather than
at closer restaurant with a low one.

To accommodate this generalization, we compute the cost of a group considering both
the spatial proximity and the object weights. In particular, we compute the “weighted
distance” instead of the Euclidean distance of an object to a query: wDist(o, q) = Wt(o, q)·
Dist(o, q), where Wt(o, q) computes the weight of o with respect to q (this is done as in
previous work that also uses weighted distances [Aurenhammer and Edelsbrunner
1984; Wu et al. 2011]). We study the weighted SUM, MAX+MAX, and MIN+MAX SGK
queries, with cost functions defined as follows.

Weighted SUM cost function. Cost(q, χ ) = ∑
o∈χ wDist(o, q).

Weighted MAX+MAX cost function. Cost(q, χ ) = α maxo∈χ (wDist(o, q))+(1−α) maxo3∈χ

(Wt(o3, q)) · maxo1,o2∈χ (Dist(o1, o2)).

Weighted MIN+MAX cost function. Cost(q, χ ) = α mino∈χ (wDist(o, q))+(1−α) maxo3∈χ

(Wt(o3, q)) · maxo1,o2∈χ (Dist(o1, o2))

As mentioned, object weights can capture aspects of objects such as user ratings,
popularity, and text relevance to the query. The larger the weight, the more attractive
the object. In the following, we interpret the weight of object o as the text relevance
(computed by the language model [Zhai and Lafferty 2004]) of o.ψ to q.ψ , denoted
by Sim(o, q). Note that using text relevance as the object weight is more challenging
than using other aspects of objects such as user ratings because the weight of an object
depends on the query keywords, which is not the case for, for example, ratings. We define
Wt(o, q) = e−Sim(o,q) so that the object weight has the same effect on the cost of a group
as does the spatial proximity (the smaller the value is, that is, the higher the rating,
the lower the cost). Next, we observe that a desired group is expected to have a small
diameter and to contain objects with large weights. Hence we multiply the maximum
value of Wt(·, ·) in a group with the group’s diameter. This means that we expect the
worst weight (e.g., the lowest rating) in a group to be large. It is straightforward to use
instead the average value or the sum value of Wt(·, ·) in the group in the cost functions.

All three weighted SGK queries are NP-hard, since the three original spatial group
keyword queries are special cases of their weighted versions.
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Table I. Summary of Queries and Algorithms

Query Algorithms Section Complexity Approximation Ratio
SUM SUM-Appro Section 4.1 O(nmlog m)

∑n
i=1

1
i

SUM-Exact Section 4.2 O(2nmlog m) N.A.
MAX+MAX MAXMAX-Appro1 Section 5.1 O(mlog m) 3

MAXMAX-Appro2 Section 5.2 O( m
n (log m

n + mlog m)) 1.8
MAXMAX-Exact Section 5.3 O( m

n rn) N.A.
MIN+MAX MINMAX-Appro Section 6.1 O(mlog m) 3

MINMAX-EXACT Section 6.2 O( m
n rn) N.A.

weighted SUM WSUM-Appro Section 8.1.1 O(nmlog m)
∑n

i=1
1
i

WSUM-Exact Section 8.1.2 O(2nmlog m) N.A.
weighted MAX+MAX WMAXMAX-Appro Section 8.2.1 O(mlog m) 1 + 2e

WMAXMAX-Exact Section 8.2.2 O( m
n rn) N.A.

weighted MIN+MAX WMINMAX-Appro Section 8.3.1 O(mlog m) 3e2

WMINMAX-Exact Section 8.3.2 O( m
n rn) N.A.

We summarize the queries proposed in the article and the algorithms designed for
them in Table I. In the table, n is the number of query keywords and m the number
of objects that contain at least one query keyword. We use r to represent the number
of objects in the search space around a candidate object, which will be explained in
Sections 5.3 and 6.2.

3. PRELIMINARIES: THE IR-TREE

We briefly review the IR-tree [Cong et al. 2009; Wu et al. 2012a] which we use as an
index structure in the algorithms to be presented. We note that other spatial-keyword
indexes (e.g. De Felipe et al. [2008]) may be used in its place.

The IR-tree is essentially an R-tree [Guttman 1984] extended with inverted files
[Zobel and Moffat 2006]. Each leaf node in the IR-tree contains entries of the form
(o, o.λ, o.di), where o refers to an object in dataset D, o.λ is the bounding rectangle of o,
and o.di is an identifier of the description of o. Each leaf node also contains a pointer
to an inverted file with the keywords of the objects stored in the node.

An inverted file index has two main components:

—a vocabulary of all distinct words appearing in the description of an object; and
—a posting list for each word t that is a sequence of identifiers of those objects whose

descriptions contain t.

Each non-leaf node R in the IR-tree contains a number of entries of the form
(cp, cp.λ, cp.di), where cp is the address of a child node of R, cp.λ is the minimum
bounding rectangle (MBR) of all rectangles in entries of the child node, and cp.di is an
identifier of a pseudo text description that is the union of all text descriptions in the
entries of the child node.

As an example, Figure 1(a) contains eight spatial objects o1, o2, . . . , o8, and Figure 1(b)
shows the words appearing in the description of each object. Figure 2 illustrates the
corresponding IR-tree, and Table II shows the content of the inverted files associated
with the nodes.

In the weighted SGK queries, we use the text relevance of an object to a query
as the weight of the object. Following past work [Cong et al. 2009], we utilize the
language model [Zhai and Lafferty 2004] to compute the text relevance. The inverted
file associated with each node also stores the term weight information. The language
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Fig. 1. A dataset of spatial keyword objects.

Fig. 2. Example IR-tree.

Table II. Content of Inverted Files of the IR-Tree

Root R5 R6 R1 R2 R3 R4

t1: R5, R6 t1: R1, R2 t1: R3, R4 t1: o1 t1: o8 t1: o4 t1: o3

t2: R5 t2: R1, R2 t3: R4 t2: o1, o5 t2: o2 t5: o4 t3: o3

t3: R5, R6 t3: R2 t4: R4 t4: o5 t3: o2 t4: o6

t4: R5, R6 t4: R1, R2 t5: R3 t4: o7 t6: o6

t5: R5, R6 t5: R2 t6: R4 t5: o7, o8

t6: R6

model we use to compute Sim(o, q) is given by the following equation:

Sim(q, o) =
∏

t∈q.ψ

p̂(t|θo.ψ ), p̂(t|θo.ψ ) = (1 − λ)
tf(t, o.ψ)

|o.ψ | + λ
tf(t, Coll)

|Coll| . (2)

Here, tf (t, d) takes a term t and a document d as arguments and returns the number
of occurrences of the t in d; Coll is the document that consists of the collection of all
documents associated with objects in D; tf (t, d)/|d| is the maximum likelihood estimate
of t in d; and λ is a smoothing parameter of the Jelinek-Mercer smoothing method.

In a leaf node R of the IR-tree, the posting list of each term t is a sequence of pairs
〈o, p̂(t|θo.ψ )〉, where o is that object in R whose text description contains t, and p̂(t|θo.ψ )
is the term weight of t in o.ψ as computed by Eq. (2). In a non-leaf node R, the posting
list of each term t is a sequence of pairs 〈cp, wtt,cp.ψ 〉, where cp is the child node of R that
contains t, and wtt,cp.ψ is the term weight of t in the pseudo document of cp (denoted
by cp.ψ), which is the maximum weight of term t in the documents contained in the
subtree rooted at node cp. The concept of a pseudo document of a node cp enables to
estimate a bound of the text relevance to a query of all documents contained in the
subtree rooted at cp.
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4. PROCESSING SUM SPATIAL GROUP KEYWORD QUERIES

An approximation algorithm is first presented in Section 4.1. The number of keywords
of a query may be small in some applications, and this motivates us to develop an exact
algorithm for processing the SUM SGK query. A dynamic programming algorithm that
uses an index to prune the search space is described in Section 4.2.

4.1. Approximation Algorithm

We show that the problem of answering the SUM query is NP-hard by a reduction
from the weighted set cover (WSC) problem in Theorem 2.3. The reduction in the proof
is approximation preserving. Thus the approximation properties of the WSC problem
carry over to our problem.

For the WSC problem, it is known (see Chvatal [1979]) that a greedy algorithm is
an Hk-approximation algorithm for the weighted k-set cover, where Hk = ∑k

i=1
1
i is the

k-th harmonic number. In our problem, k is the number of query keywords. Thus we
can adapt the greedy algorithm to process the SUM spatial group keyword query.

In the WSC problem, there are m elements {e1, . . . , em} and a set S of n sets
{S1, . . . , Sn}, where each set Si has a weight wi. The objective is to select a group
of sets from S such that they cover all elements with the smallest total weight. The
basic idea of the greedy algorithm for WSC is to perform a sequence of steps where, in
each step, a set Si is selected greedily from S such that the value of its weight divided
by the uncovered elements is the smallest.

A straightforward method of adapting the greedy algorithm is to decompose the given
user query q dynamically into a sequence of partial queries, each containing a different
set of keywords depending on the preceding partial queries, and then to evaluate these
partial queries. Specifically, we start with the user query q, which can be regarded as
the first partial query, and we find the object with the lowest cost that covers part or all
of the keywords in q. The object is added to the result set. The uncovered keywords in
q form a new partial query with the same spatial location as q. We then find an object
with the lowest cost that covers part or all of the keywords in the new partial query.
This process continues until all keywords are covered, or until some keyword cannot
be covered by any object. This method needs to scan the dataset multiple times, once
for each partial query.

To avoid multiple scans, we propose a greedy algorithm on top of the IR-tree. We
proceed to focus on two aspects of the idea that are important to performance: (1) how
to find that object with the lowest cost for each partial query using the IR-tree; and
(2) whether we can reuse the computation for the preceding partial query when com-
puting the next partial query.

Given a partial query qs, we adopt the best-first strategy to traverse the IR-tree. We
use a min-priority queue to maintain the intermediate results. The key of the queue
is the cost of each element. The cost of an object o is computed by Dist(o,q)

|o.ψ∩qs.ψ | ; the cost of

a node entry R is computed by minDist(R,q)
|R.ψ∩qs.ψ | , where minDist(R, q) represents the minimum

distance between q and R. This way of computing the costs of objects and nodes guar-
antees that our algorithm has an approximation ratio Hk =

∑k
i=1

1
i .

LEMMA 4.1. Given a partial query qs and an IR-tree, the cost of a node is a lower
bound of the cost of any of its child nodes.

PROOF. Given a node R and any of its child nodes R′, we have minDist(R, q) ≤
minDist(R′, q), and |R.ψ ∩ qs.ψ | ≥ |R′.ψ ∩ qs.ψ |.

Lemma 4.1 says that the cost of a node is a lower bound of the costs of all objects
in the subtree rooted at the node. Thus, if the cost exceeds that of some object that
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has been visited, we can disregard all objects in the subtree for qs. This guarantees
the correctness of the best-first strategy for finding an object with the lowest cost for a
partial query qs.

We next discuss whether we can reuse the computation for preceding partial queries.
An obvious method is to process each partial query from scratch. However, this incurs
repeated computation when a node or object is visited multiple times. To avoid this, we
divide the entries (corresponding to leaf and non-leaf nodes) in the priority queue into
two parts: (1) those entries that have already been visited when processing previous
partial queries; and (2) those not yet been visited.

LEMMA 4.2. The elements in the priority queue that have been visited when processing
previous partial queries can be disregarded when processing a new partial query.

PROOF. The keyword set of a previous partial query is a superset of the keyword set
of a new partial query. For a visited node, all its entries containing keywords of the
new partial query have been enqueued into the priority queue; thus we can disregard
the elements that have been visited.

The pseudocode is outlined in Algorithm 1. The algorithm uses a min-priority queue
for the best-first search with the cost as the key. Variable mSet keeps the keyword set
of the current partial query, and pSet keeps the keyword set of the preceding partial
query. For each partial query, we use the best-first search to find an object that overlaps
with the query keyword mSet and has the lowest cost.

Whenever the algorithm pops an object from U , it is guaranteed that the text descrip-
tion of the object overlaps with mSet (the keyword set of the current partial query),
and that the object has the lowest cost. Thus it becomes part of the result. The al-
gorithm proceeds with the next partial query by changing the keyword component

ALGORITHM 1: SUM-Appro(q, irT ree)

1 U ← new min-priority queue;
2 U .Enqueue(irT ree.root, 0);
3 Group ← ∅; Cost ← 0;
4 mSet ← q.ψ ; pSet ← q.ψ ;
5 while mSet �= ∅ and U is not empty do
6 p ← U.Dequeue();
7 Cost ← Cost + p.Key;
8 if p is an object then
9 Group ← Group ∪ p;

10 pSet ← mSet ;
11 mSet ← mSet \ p.ψ ;
12 for each entry p′ in U do
13 if p′.ψ∩ p.ψ �= ∅ then p′.key = p′ .key∗|p′.ψ∩mSet|

|p′ .ψ∩pSet| ;
14 else remove p from U ;
15 reorganize the priority queue U using new key values;
16 else
17 for each entry p′ in node e do
18 if mSet ∩ p′.ψ �= ∅ then
19 if p is a non-leaf node then dist ← minDist(p′, q);
20 else dist ← Dist(p′, q);
21 U .Enqueue(p′, dist

|mSet∩o.ψ | );
22 return Cost and Group ; // results
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Table III. Example Dataset

o1 o2 o3 o4

Distance to the query 1 2 2.5 4
Keywords t1,t2 t2,t3 t1,t3 t1

(line 11). Based on Lemma 4.2, we do not need to scan all objects to process the new
partial query. Rather, we only have to update the unvisited elements in the priority
queue with the new cost based on the new partial query (lines 12–15). We then use the
best-first search to process the new partial query.

Assume there are n query keywords, and that the number of relevant objects is m.
The number of relevant nodes is O(m), and of the elements in the queue is also O(m).
In the worst case, all nodes are inserted into the queue, and the complexity of this step
is O(mlog m). Next, at most n objects are dequeued from the queue, and we also need
to reorganize the queue, which costs O(nmlog m). For the remaining objects, we only
need to remove them from the queue, which costs at most O(mlog m). Thus the total
worst-case complexity is O(nmlog m).

4.2. Exact Algorithm

A straightforward exact algorithm enumerates every subset of spatial objects whose
text descriptions overlap with the query keyword set in D and check whether it covers
all query keywords and has the smallest cost. This yields an exponential running
time in the number of relevant objects, which is very expensive. A better method is
to perform an exhaustive search on a smaller set of objects. The idea is based on the
following lemma.

LEMMA 4.3. Consider a query q and two objects oi and o j, each containing a subset of
the query keywords. Let wsi = q.ψ ∩oi.ψ and wsj = q.ψ ∩o j .ψ . If Dist(oi, q) < Dist(o j, q),
{oi} is a better group than {o j} for any keyword subset of wsi ∩ wsj .

PROOF. The proof is obvious since oi always incurs lower cost than does o j for any
keyword subset wsi ∩ wsj .

Thus, given a subset of query keywords ws, among those objects covering ws, the one
that is the closest to the query contributes the lowest cost to ws.

Example 4.4. Consider a query q with keywords q.ψ = {t1, t2, t3} and the four
objects in Table III. We know that Dist(o1, q) < Dist(o2, q) and o1 ∩ o2 = {t2}. According
to Lemma 4.3, {o1} is a better result set than {o2} for the query with keyword set {t2}.

Since the set of query keywords is small, the number of its subsets is not large,
although exponential in the number of query keywords. For each subset of query key-
words, we find the object that covers the subset of query keywords and has the lowest
cost. We call the set of these objects objSet. We then only need to do an exhaustive
search on these objects to find the best group. The time complexity of this method is
O(2|objSet|). With n keywords in the keyword component of a query q, at most (2n − 1)
objects need to be considered, and thus its worst time complexity is O(22n

), which means
that this method is still time consuming.

As the number of query keywords may be small in many cases, we develop an exact
algorithm using dynamic programming. Given a query q, for each subset X of q.ψ , we
denote the set of objects that cover X with the smallest cost by Group(X), and denote
the cost of covering X by Cost(X). The idea of the algorithm is that, given a query q, we
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first initialize the cost of subsets of q.ψ according to Lemma 4.3 as

Group(X) =
{

arg mino∈objSet∧X⊆o.ψ {Dist(o, q)}, ∃o(X ⊆ o.ψ),
∅, otherwise

Cost(X) =
{

mino∈objSet∧X⊆o.ψ {Dist(o, q)}, ∃o(X ⊆ o.ψ)
∞, otherwise.

(3)

Next, we process the subsets of q.ψ with infinite cost in ascending order of their length.
Given a subset X of q.ψ , Group(X) cost must contain at least one object in objSet.
Hence, we can check each object in objSet that contains some keywords in X with its
corresponding complementary keyword subset with respect to X (whose optimal cost is
already known) to find the lowest cost for X, as shown in Eq. (4).

Cost(X) = min(Cost(X), min
o∈objSet∧o.ψ∩X�=∅

(Cost(X \ o.ψ) + Dist(o, q))). (4)

Given a keyword subset X, the complexity of finding the lowest cost of X is O(|objSet|),
and hence the complexity of finding the optimal group from objSet in this algorithm is
O(2n·|objSet|), which is much better than the simple method with complexity O(2|objSet|).

Based on Eqs. (3) and (4), we can scan the whole dataset to find all objects relevant to
the query and perform dynamic programming to find the optimal group. This has two
drawbacks: (1) it wastes computation when checking many unnecessary objects that
do not contain any query keyword, and (2) all those objects whose text descriptions
overlap with the query keywords are scanned to obtain the lowest costs for the query
keyword subsets.

To overcome the first drawback, we utilize the IR-tree that enables us to retrieve
only those objects that contain some query keywords while avoiding checking those
containing no query keywords. To address the second drawback, we show that it is not
always necessary to scan all the objects covering part of the query keywords.

We propose the following principle for our algorithm: we process objects in ascending
order of their distances to a query q. By following this order, we know that the lowest
cost of a subset is always contributed by a single or a group of closer objects based on
Lemma 4.3.

LEMMA 4.5. Consider a query q. If we process objects in ascending order of their
distances to q, when we reach an object oi containing a query keyword subset ws, all
subsets of ws will get their lowest costs.

PROOF. Obvious since all objects to be visited after oi have larger cost for any subset
of ws; thus its lowest cost is either contributed by oi or by objects visited earlier.

Example 4.6. Recall the query in Example 4.4. We first process object o1, and we
know that 1 is the lowest cost of subsets {t1, t2}, {t1}, and {t2}. Then we reach o2, and
we know that 2 is the lowest cost of subsets {t2, t3} and {t3} ({t2} already has lowest
cost 1).

Based on Lemma 4.5, we can derive a stopping condition for our algorithm: that
it reaches an object that contains all the query keywords. However, if no such object
exists in the dataset, the algorithm is still required to scan to the furthest-away object
containing some query keywords before it can stop. In the example in Table III, we
need to read all four objects. But if the third furthest-away object o3 covers {t1, t2, t3},
we need not read o4.

We proceed to present an additional stopping condition.

LEMMA 4.7. Given two subsets wsi and wsj of query keywords, and with union wsu =
wsi ∪ wsj , we have Cost(wsu) ≤ Cost(wsi) + Cost(wsj).
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PROOF. Obvious from Eq. (4)

Based on Lemma 4.7, for any two keyword sets whose lowest costs are known, we
can obtain an upper bound of the lowest-cost value for the keyword subset that is the
union of the two keyword subsets. We denote the upper bound by Costu.

In our algorithm, we keep track of the upper bounds for those subsets whose costs
are still unknown. Whenever we reach an object from which some keyword subset gets
its lowest cost (according to Lemma 4.5), the subset, together with each of the subsets
that have either lowest costs or upper bounds of cost (i.e., those keyword subsets that
are covered by visited objects), is used to update the upper-bound cost values of the
corresponding union of the keyword subsets.

Example 4.8. Recall Example 4.4. After object o2 is scanned, {t3} gets its lowest cost
2. We can compute an upper bound for {t1, t3} using the costs of {t1} and {t3}, that is,
Costu({t1, t3}) = Cost({t1}) + Cost({t3}) = 3 (covered by o1 and o2). Similarly, we can also
compute an upper-bound value 3 for {t1, t2, t3} by using the costs of {t1, t2} and {t3}, and
this set is also covered by o1 and o2.

When we reach o3, we get a lower cost of 2.5 for {t1, t3}(the previous upper bound of
3 is updated). Then {t1, t3} are combined with {t2} to form {t1, t2, t3} with a cost of 3.5.
Since this value exceeds its current upper bound, no update is needed.

We are ready to introduce a lemma that provides an early stopping condition for our
algorithm.

LEMMA 4.9. Suppose that we scan objects in ascending order of their distances to q.
Given a keyword subset ws, when we reach object oi, and if Dist(oi, q) ≥ Costu(ws), then
Cost(ws) = Costu(ws), where Costu(ws) is the current upper bound of ws.

PROOF. We prove this by contradiction. If any object o j further to q than oi is a
member of the best group, then it must have Cost(ws) ≥ Dist(o j, q) ≥ Dist(oi, q) ≥
Costu(ws). Since Costu(ws) cannot be smaller than Cost(ws), no further object will be
contained in the best group. In addition, Costu(ws) is the current minimum-cost value
and thus becomes the lowest cost of ws.

Example 4.10. Recall again Example 4.4. By following ascending order of distances,
when the algorithm reaches o4 (Dist(q, o4) = 4), we can conclude that Costu({t1, t2, t3}) =
3 is the lowest cost and that the best group is {o1, o2}.

The pseudocode is described in Algorithm 2. Those keyword subsets whose lowest
costs are already known are stored in the variable markedSet, and the subsets that have
upper bounds are stored in the variable valuedSet. The IR-tree is used for retrieving
the next nearest object that covers some query keywords. We use a min-priority queue
U to store the IR-tree nodes and objects, where their distances to the query are the
keys.

The priority queue U is initialized to the root node of the IR-tree (line 4). We dequeue
an element p from U , and we compute the keyword intersection ks between p and q
(lines 7–8). If the keyword subset ks is contained in markedSet (whose lowest costs are
known), we do not need to process p, according to Lemma 4.3 (line 9). Otherwise, we
process p according to its type: (1) if p is a non-leaf index node, we check each of its
child nodes, denoted by p′, to see whether p′ contains a keyword subset of q that is
not contained in markedSet; if so, p′ is inserted into U with its minimum distance to
query q as its priority key (lines 10–12); (2) if p is a leaf node, we handle each object
in p similarly to how we handle each child node in (1) (lines 13–15); (3) if p is an
object, we first utilize its distance to q to move some keyword subsets from valuedSet
to markedSet. Those subsets whose upper bounds are smaller than Dist(p, q) get their
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ALGORITHM 2: SUM-ExactWIndex(q, irT ree)
1 markedSet ← ∅, valuedSet ← ∅;
2 n ← |q.ψ |;
3 for i from 1 to 2n − 1 do Cost[i] ← ∞, Group[i] ← ∅;
4 U ← new min-priority queue;
5 U .Enqueue(irT ree.root, 0);
6 while U is not empty do
7 p ← U.Dequeue();
8 ks ← q.ψ

⋂
p.ψ ;

9 if ks �∈ markedSet then
10 if p is a non-leaf node then
11 foreach entry p′ in node p do
12 if q.ψ

⋂
p′.ψ �= ∅ and q.ψ

⋂
p′.ψ �∈ markedSet then U .Enqueue(p′,

minDist(p′, q));
13 else if p is a leaf node then
14 foreach object o in leaf node p do
15 if q.ψ

⋂
o.ψ �= ∅ and q.ψ

⋂
o.ψ �∈ markedSet then U .Enqueue(o,

Dist(o, q));
16 else // p is an object
17 foreach set S ∈ valuedSet do
18 i ← MapToInteger(S);
19 if Cost[i] < Dist(p, q) then
20 if i = 2n−1 then // Lemma 4.9
21 return Cost[2n−1] and Group[2n − 1];
22 valuedSet ← valuedSet \ S;
23 markedSet ← markedSet

⋃
S;

24 foreach subset ss ⊆ ks do
25 if ss �∈ markedSet then
26 i ← MapToInteger(ss);
27 markedSet ← markedSet

⋃
ss;

28 if ss ∈ valuedSet then
29 valuedSet ← valuedSet \ ss;
30 Cost[i] ← Dist(p, q);
31 Group[i] ← {p};
32 j ← MapToInteger(ks);
33 if j = 2n − 1 then // Lemma 4.5
34 return Cost[2n − 1] and Group[2n − 1];
35 for i from 1 to 2n − 1 do
36 if Cost[i] = ∞ then continue;
37 unionKey ← i| j;
38 if unionKey = i or unionKey = j then continue;
39 if Cost[unionKey] is ∞ then
40 valuedSet ← valuedSet

⋃
MapToSet(unionKey);

41 D ← Cost[i] + Dist(p, q);
42 if Cost[unionKey] > D then
43 Cost[unionKey] ← D;
44 Group[unionKey] ← Group[i]

⋃
{p};

45 return Cost[2n − 1] and Group[2n − 1];

lowest costs (lines 17–23) according to Lemma 4.9. If the query keyword set q.ψ is
confirmed to get its lowest cost, the algorithm terminates (line 21). Then, for each
subset ss of q.ψ ∩ p.ψ , if its lowest cost is unknown (line 25), the object p constitutes
the best group (Lemma 4.5) for ss. Since ss may already be covered by previously
visited objects and have an upper bound of its lowest cost, we remove ss from valuedSet
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Table IV. Results After Processing o1

i 1 2 3 4 5 6 7
Cost 1 1 1 ∞ ∞ ∞ ∞

Group o1 o1 o1 null null null null
Status M M M null null null null

Table V. Results After Processing o2

i 1 2 3 4 5 6 7
Cost 1 1 1 2 3 2 3

Group o1 o1 o1 o2 o1,o2 o2 o1,o2

Status M M M M V M V

Table VI. Results After Processing o3

i 1 2 3 4 5 6 7
Cost 1 1 1 2 2.5 2 3

Group o1 o1 o1 o2 o3 o2 o1,o2

Status M M M M M M V

(lines 28–29). Once q.ψ gets its lowest cost, the algorithm terminates (lines 32–34). In
lines 35–44, we combine the object p with those subsets that already have cost values
(Lemma 4.7). In line 37, “|” is the bit-wise OR operator. If one is the subset of the other
(line 39), we do not combine the two subsets; otherwise, we update the cost value for
the union keyword subset (lines 42–44).

Example 4.11. Recall Table III in Example 4.4. The algorithm works as follows.
(1) After processing o1, the result is as shown in Table IV, in which i is the integer

representing a keyword subset and status “M” means that the subset is contained in
markedSet. Table IV shows that {t1} (i = 1), {t2} (i = 2), and {t1, t2} (i = 3) get their
lowest costs and best groups.

(2) After processing o2, the result is as shown in Table V. Except for {t1, t3} and
{t1, t2, t3}, all the subsets obtain their lowest costs. The cost values of the two subsets
are obtained by combining other subsets with known lowest cost. The status value “V”
means that the subset is stored in valuedSet.

(3) After processing o3, we obtain the result as shown in Table VI. Here, {t1, t3} gets
its lowest cost since it is covered by o3.

(4) When we reach o4, since its distance to the query is already larger than the
currently lowest cost of {t1, t2, t3} (the only element in valuedSet), we do not need to
process it. Set {t1, t2, t3} gets the lowest-cost value 3 and is moved to markedSet. We
now find the best group and the lowest cost.

In our previous work [Cao et al. 2011], we also proposed an exact algorithm utilizing
the IR-tree. The difference is that, in the new algorithm, we combine a newly accessed
object p with each keyword subset s that already has a cost value to update the upper-
bound cost for the union keyword subset of p.ψ and s (lines 35–44). In the earlier
algorithm, we combine each subset ts of p.ψ with each keyword subset s that already
has a cost value to update the upper-bound cost of the union of ts and s, which is not
necessary and thus less efficient.

Assume the number of query keywords is n, and the number of relevant objects is
m. The cost of maintaining the queue is O(mlog m). When processing an object that is
dequeued from U , we first check each of its query keyword subset, and then combine
the object with existing keyword subsets that already have a cost, and this costs O(2n).
Therefore the worst-case time complexity of this algorithm is O(2nmlog m).
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5. PROCESSING MAX+MAX SPATIAL GROUP KEYWORD QUERIES

We present two approximation algorithms with performance bounds in Sections 5.1
and 5.2 and an exact algorithm in Section 5.3.

5.1. Approximation Algorithm 1

Given a query q, the idea of the algorithm, called MAXMAX-Appro1, is to find the
nearest object for each keyword ti in q.ψ . The set of all such nearest objects makes up
the result set. The pseudocode, which assumes the dataset is indexed using the IR-tree,
is outlined in Algorithm 3. The algorithm uses a min-priority queue U for the best-first
search. In each iteration, we dequeue an element p from U . If p is an object, we push
it into the result set and update the uncovered keyword subset (lines 7–10); if p is a
node in the IR-tree, we insert all its child nodes that contain some uncovered keywords
into U (lines 12–17). The runtime of this algorithm is linear in the number of query
keywords.

ALGORITHM 3: MAXMAX-Appro1(q, irT ree)

1 U ← new min-priority queue;
2 U .Enqueue(irT ree.root, 0);
3 Group ← ∅; Cost ← 0;
4 uSkiSet ← q.ψ ; // uncovered keywords
5 while U is not empty do
6 p ← U.Dequeue();
7 if p is an object and uSkiSet ∩ p.ψ �= ∅ then
8 Group ← Group ∪ {p}; Cost ← Cost + Dist(p, q) ; // add p to result
9 uSkiSet ← uSkiSet \ p.ψ ;

10 if uSkiSet = ∅ then break;
11 else
12 read the posting lists of p for keywords in uSkiSet;
13 foreach entry p′ in node p do
14 if uSkiSet ∩ p′.ψ �= ∅ then
15 if p is a non-leaf node then
16 U .Enqueue(p′, minDist(p′, q));
17 else U .Enqueue(p′, Dist(p′, q));
18 return Group and Cost; // results

Example 5.1. Consider a query q.ψ = {t1, t3, t5} and the objects shown in Figure 1.
Object o1 covering t1 is first added to the result. Then o2 containing t3 is added and,
when o4 containing t5 is retrieved, we obtain a group. Object o4 has the maximum
distance to query, which is 3.2. The maximum diameter is 6, which is the distance
between o2 and o4. Thus the cost of this group is 9.2.

We proceed to show that MAXMAX-Appro1 is within an approximation factor of 3. We
denote the group returned by MAXMAX-Appro1 as Gapp1 , and denote the optimal group
by Gopt.

THEOREM 5.2. The cost of Gapp1 for a given query q, is at most 3 times the cost of Gopt:
Cost(q, Gapp1 ) ≤ 3 ·Cost(q, Gopt). When α is enabled in the cost function, the ratio is 2

α
−1.

PROOF. Let o f denote the furthest-away object from q in Gapp1 , and let d = Dist(o f , q).
Obviously, the optimal solution Gopt satisfies Cost(q, Gopt) ≥ d. In the group Gapp1 , the
largest possible distance between two objects in Gapp1 is 2d. Thus we have the following
cost: Cost(q, Gapp1 ) ≤ d + 2d ≤ 3 · Cost(q, Gopt).
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When α is enabled in the cost function, the optimal solution Gopt satisfies

Cost(q, Gopt) ≥ αd, and Cost(q, Gapp1 ) ≤ αd + (1 − α)2d; we thus obtain Cost(q,Gapp1 )
Cost(q,Gopt)

≤
2−α

α
.

Assume that there are n query keywords and m relevant objects. Thus the number
of relevant nodes is O(m), and the size of the queue is O(m) as well. In the worst case,
before we can get an object from the queue, all relevant nodes are inserted into the
queue, which costs O(mlog m). At most n objects are dequeued from the queue to form
the result group, and the others are removed directly from the queue. This step costs
O(mlog m) in the worst case. Hence the complexity of this algorithm is O(mlog m) in
the worst case.

5.2. Approximation Algorithm 2

Based on MAXMAX-Appro1, we present an algorithm with a better approximation
bound.

The underlying idea can be described as follows. We first invoke the algorithm
MAXMAX-Appro1 to find a group of objects Gapp1 . Let tinf be the most infrequent key-
words in q.ψ . Next, for each object oi containing tinf, we create a new query qoi using
the position of oi and the keywords of the original query q, that is, qoi .λ = oi.λ and
qoi .ψ = q.ψ \ oi.ψ . We then invoke MAXMAX-Appro1 to find a group of objects for qoi ,
denoted by Goi , and we compute the cost of this group with respect to q. After each ob-
ject containing tinf is processed, we find the group with the smallest cost, and compare
it with Gapp1 . Finally, we return the one with smaller cost as the result.

We preprocess the dataset to compute the frequency of each keyword, that is, the
number of objects that contain a given keyword. Before executing the algorithm, we load
a file that contains the keyword frequencies into memory and organize the keywords
with their frequencies in a hash map. Given a query q, we read the frequency of each
keyword in q.ψ from the hash map to find tinf.

This algorithm only focuses on those objects containing the most infrequent query
keyword. However, the number of such objects may still be large. We show that it is
not necessary to process each object containing tinf according to the following lemma.

LEMMA 5.3. Given a MAX+MAX SGK query q and the current best cost curCost, any
object whose distance to q exceeds curCost cannot be contained in the optimal group
of q.

PROOF. If an object o with distance to q larger than curCost is contained in a group G,
we have Cost(q, G) ≥ maxo1,o2∈G Dist(o1, o2) ≥ Dist(o, q) > curCost, and thus G cannot
be the optimal group.

Based on Lemma 5.3, we can process the objects containing tinf in ascending order of
their distances to the query q. When we obtain a group, we update the current best cost
if it exceeds the cost of the new found group. When we reach an object whose distance
is even larger than the current best cost, we can stop and return.

The pseudocode is given in Algorithm 4. Using MAXMAX-Appro1, we first find a group
that serves as the current best group (line 3). Then we find the word tinf that is the most
infrequent query keyword (line 4). In lines 5–20, we incrementally search for the next
nearest objects containing tinf within the range of curCost. We dequeue an element p
from U in each step. If it is an IR-tree node, we check whether its minimum distance
exceeds curCost (line 9). If so, the algorithm terminates according to Lemma 5.3.
Otherwise, we read all its child nodes and insert those nodes that contain tinf into
U according to their minimum distances to q (lines 9–13). If p is an object, we also
compare its distance to q with curCost to determine whether the algorithm terminates
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ALGORITHM 4: MAXMAX-Appro2(q, irT ree)

1 U ← new min-priority queue;
2 U .Enqueue(irT ree.root, 0);
3 (curGroup, curCost) ← MAXMAX-Appro1(q, irT ree);
4 tinf ← the most infrequent keyword in q.ψ ;
5 while U is not empty do
6 p ← U.Dequeue();
7 if p is not an object then
8 if minDist(p, q) ≥ curCost then break; // Lemma 5.3
9 foreach entry p′ in node p do

10 if tinf ∈ p′.ψ then
11 if p is a leaf node then
12 U .Enqueue(p′, Dist(p′, q));
13 else U .Enqueue(p′, minDist(p′, q));
14 else
15 if Dist(p, q) ≥ curCost then break; // Lemma 5.3
16 qp.λ ← p.λ; qp.ψ ← q.ψ \ p.ψ ;
17 (group, cost) ← MAXMAX-Appro1(qp, sirT ree);
18 if cost < curCost then
19 curCost ← cost;
20 curGroup ← group;
21 return curGroup and curCost;

(line 15). We create a new query qp with the position of p and the text of q, and we
then find a group using qp as the query and compute its cost (lines 16–17). If this new
cost is smaller than curCost, we update curCost and the current best group curGroup
(lines 18–20). Finally, we return curGroup and curCost.

Example 5.4. Recall query q and the dataset in Example 5.1. Algorithm MAXMAX-
Appro1 is first invoked to return a group {o1, o2, o4} with cost 9.2. In the query, t3
comprises the most infrequent keywords, and is only contained in o2 and o3. We search
for a group near o2, that is {o2, o7, o8} with cost 10.2 (Dist(o8, q) + Dist(o2, o7) = 8 + 2.2),
which is worse than that of the previous one. Then we search for a group near o3,
and we find {o3, o4} with cost 8.2 (Dist(o4, q) + Dist(o3, o4) = 3.2 + 5). Therefore {o3, o4}
becomes the current best group, and we return it as the result.

We proceed to study the approximation ratio of the algorithm. We denote the group
returned by MAXMAX-Appro2 as Gapp2 .

LEMMA 5.5. Given a query q and an object oi containing tinf, the cost of the group
found at the position of oi, that is, Cost(q, Goi ), is in the following range: Dist(oi, q) +
Dist(oi, omax) ≤ Cost(q, Goi ) ≤ Dist(oi, q) + 3Dist(oi, omax), where omax is the furthest-away
object from oi in Goi .

PROOF. (1) Dist(oi, q) is a lower bound on the distance of this group to q, and
Dist(oi, omax) is a lower bound on the diameter of this group. As a result, the mini-
mum cost of Goi is Dist(oi, q) + Dist(oi, omax).

(2) Dist(oi, q) + Dist(oi, omax) is the maximum possible distance to q of Goi . Further,
the diameter will not exceed 2Dist(oi, omax) since every object of Goi is in the circle with
center oi and radius Dist(oi, omax). Therefore the cost of this group is upper bounded by
Dist(oi, q) + 3Dist(oi, omax).

THEOREM 5.6. The approximation ratio of algorithm MAXMAX-Appro2 is not larger
than 1.8, that is, Cost(q, Gapp2 ) ≤ 1.8 · Cost(q, Gopt).
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PROOF. Let o f denote the furthest-away object from q in Gapp1 , let o j denote the object
containing the word tinf in the optimal group Gopt, and let omax be the object that is the
furthest away from o j in Goj .

(1) Consider the case where Dist(o j, q) ≥ Dist(o f , q).
Object omax must contain some keyword, denoted by t, which is not covered by the

other objects in Goj . Among objects containing t, omax is the closest to o j . Therefore,
in Gopt, the object covering t cannot be closer to o j than omax. As a result, Dist(o j, omax)
is a lower bound on the diameter of Gopt. Dist(o j, q) is a lower bound on the distance
between q and Gopt. Hence we get Cost(q, Gopt) ≥ Dist(o j, q) + Dist(o j, omax).

Because Gapp2 is either the group with the smallest cost among groups found
on each object containing tinf or Gapp1 , we know that Cost(q, Gapp2 ) ≤ Cost(q, Goj )
and Cost(q, Gapp2 ) ≤ Cost(q, Gapp1 ). According to Lemma 5.5, we get Cost(q, Gapp2 ) ≤
Cost(q, Goj ) ≤ Dist(o j, q) + 3Dist(o j, omax) and, according to Theorem 5.2, we get
Cost(q, Gapp2 ) ≤ 3Dist(o f , q) ≤ 3Dist(o j, q). Thus it holds true that

Cost(q, Gapp2 )
Cost(q, Gopt)

≤ Dist(o j, q) + 3Dist(o j, omax)
Dist(o j, q) + Dist(o j, omax)

,
Cost(q, Gapp2 )
Cost(q, Gopt)

≤ 3Dist(o j, q)
Dist(o j, q) + Dist(o j, omax)

.

If Dist(o j, omax) ≤ 2
3 Dist(o j, q), then Dist(o j, q)+3Dist(o j, omax) ≤ 3Dist(o j, q). Hence we

can use the first inequality to conclude that Cost(q,Gapp2 )
Cost(q,Gopt)

≤ 1.8. Otherwise, Dist(o j, omax) >

2
3 Dist(o j, q), then Dist(o j, q) + 3Dist(o j, omax) > 3Dist(o j, q), and we can use the second

inequality to prove Cost(q,Gapp2 )
Cost(q,Gopt)

≤ 1.8.

(2) Now consider the case where Dist(o j, q) < Dist(o f , q).
Here, o f must contain some keyword t that is not covered by any other objects in Gapp1 .

Since o f is the closest object to q containing t, the object containing t in Gopt must be
further to q than o f , and thus Dist(o f , q) is the lower bound of the maximum distance
of an object in Gopt to q. Dist(o j, omax) is the lower bound of the maximum distance
between any pair. Therefore we can get Cost(q, Gopt) ≥ Dist(o f , q) + Dist(o j, omax).

Because Cost(q, Gapp2 ) ≤ Cost(q, Goj ) and Cost(q, Gapp2 ) ≤ Cost(q, Gapp1 ), we get
Cost(q, Gapp2 ) ≤ Cost(q, Goj ) ≤ Dist(o j, q) + 3Dist(o j, omax) < Dist(o f , q) + 3Dist(o j, omax)
and Cost(q, Gapp2 ) ≤ Cost(q, Gapp1 ) ≤ 3Dist(o f , q). Thus it holds true that

Cost(q, Gapp2 )
Cost(q, Gopt)

≤ Dist(o f , q) + 3Dist(o j, omax)
Dist(o f , q) + Dist(o j, omax)

,

Cost(q, Gapp2 )
Cost(q, Gopt)

≤ 3Dist(o f , q)
Dist(o f , q) + Dist(o j, omax)

.

Cost(q,Gapp2 )
Cost(q,Gopt)

can similarly be shown to be no larger than 1.8. Thus we complete the
proof.

THEOREM 5.7. The approximation ratio of algorithm MAXMAX-Appro2 is not larger
than (2−α)2

(1−α)2+1 when α is enabled in the cost function (α < 1).

PROOF. If α is enabled in the cost function, Lemma 5.5 gives αDist(oi, q) + (1 −
α)Dist(oi, omax) ≤ Cost(q, Goi ) ≤ αDist(oi, q) + (2 − α)Dist(oi, omax).

We still let o f denote the furthest-away object from q in Gapp1 , let o j denote the object
containing the word tinf in the optimal group Gopt, and let omax be the object that is the
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furthest away from o j in Goj . When Dist(o j, q) ≥ Dist(o f , q), we obtain

Cost(q, Gapp2 )
Cost(q, Gopt)

≤ αDist(o j, q) + (2 − α)Dist(o j, omax)
αDist(o j, q) + (1 − α)Dist(o j, omax)

,

Cost(q, Gapp2 )
Cost(q, Gopt)

≤ (2 − α)Dist(o j, q)
αDist(o j, q) + (1 − α)Dist(o j, omax)

.

If Dist(o j, omax) ≤ 2−2α
2−α

Dist(o j, q), we use the first inequality; otherwise, we use the

second inequality, which gives Cost(q,Gapp2 )
Cost(q,Gopt)

≤ (2−α)2

(1−α)2+1 .
When Dist(o j, q) < Dist(o f , q), similar to the proof of Theorem 5.6, we obtain the same

result.

Assume there are n query keywords, and that the number of relevant objects is
m. Since we only invoke MAXMAX-Appro1 around objects containing tinf , the number
of elements in the queue is at most O( m

n ). Thus the complexity of maintaining the
queue is O( m

n log m
n ). On each object containing tinf , we invoke MAXMAX-Appro1, and

cost is O( m
n mlog m), where O(mlog m) is the complexity of MAXMAX-Appro1. Hence the

worst-case complexity of this algorithm is O( m
n (log m

n + mlog m)).

5.3. Exact Algorithm

It is challenging to develop an exact algorithm for MAX+MAX SGK queries, as it
appears that an exact algorithm cannot avoid an exhaustive search of the object space.
We extend the idea of the MAXMAX-Appro2 algorithm to devise the exact algorithm.

Because the optimal group must contain an object containing the most infrequent
query keyword tinf, we can do an exhaustive search around each object containing tinf
to find the best group containing this object. We repeat this until all objects containing
tinf are processed. Then the group with the smallest cost must be the optimal answer
to the query.

We first utilize MAXMAX-Appro2 to derive an upper-bound cost for the optimal group.
It is initially used to bound the search around an object containing tinf. We also develop
several pruning strategies to reduce the enumeration of groups during the exhaustive
search around an object. The upper-bound cost keeps decreasing as more groups are
enumerated, and is used to limit the enumeration in further search. With these efforts,
we expect the exact algorithm to be reasonably efficient when the dataset contains at
most tens of thousands of objects and the number of query keywords is small.
I. Bounding the exhaustive space around an object containing tinf. Since enumerating
the groups runs exponentially with the number of objects in the search space, how to
reduce the exhaustive search around an object containing tinf is crucial. We proceed to
explain with the help of the current best cost curCost.

LEMMA 5.8. Given a MAX+MAX SGK query q and two objects oi and o j, the
lower-bound value of the cost of a group G containing oi and o j can be computed by
max(Dist(oi, q), Dist(o j, q)) + Dist(oi, o j). We denote this value as LOWq(oi, o j).

PROOF. max(Dist(oi, q), Dist(o j, q)) ≤ maxo∈G Dist(o, q) and Dist(oi, o j) ≤ maxo1,o2∈G
Dist(o1, o2), and thus LOWq(oi, o j) ≤ Cost(q, G).

Hence, if LOWq(oi, o j) exceeds curCost, we know that oi and o j cannot contribute to
the optimal group together. We denote by Cr

o the circular region with o as the center
and with r as the radius, and we denote by Er

o1,o2
the ellipse region with o1 and o2 as

the foci and with r as the transverse diameter. We have the following lemma to find
the exhaustive search space around an object containing tinf.
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Fig. 3. Exhaustive search space around oi containing tinf.

LEMMA 5.9. Given a MAX+MAX SGK query q and an object oi containing tinf, the
most infrequent keyword in q.ψ , the search space around oi is Cdiam

oi
∩ EcurCost

q,oi
, where

diam = curCost − Dist(q, oi). We denote this region by S
q
oi .

PROOF. (1) Given q and oi, if an object om whose distance to oi exceeds diam, then
LOWq(oi, om) ≥ Dist(q, oi)+diam = curCost. Thus any object that is possible to combine
with oi to form the optimal group must be in Cdiam

oi
.

(2) Within Cdiam
oi

, if an object o j whose distance to q exceeds that of oi then
LOWq(oi, o j) = Dist(q, o j) + Dist(oi, o j). Hence, if it is possible that oi and o j can con-
tribute to the optimal group together, it must be true that LOWq(oi, o j) ≤ curCost,
which means that o j is in EcurCost

q,oi
.

Therefore we can conclude that Cdiam
oi

∩ EcurCost
q,oi

is the search space around oi. Figure 3
illustrates the proof.

Based on this lemma, we can prune objects according to the following lemma.

LEMMA 5.10 (PRUNING STRATEGY). Given a MAX+MAX SGK query q and an object o
if, for each object oi containing tinf, o is not in S

q
oi , then o can be pruned.

PROOF. The optimal group must contain one object containing tinf. If o cannot con-
tribute to the optimal group with any object containing tinf together, we know it cannot
be contained in the optimal group.

This strategy can be extended to prune an MBR in the IR-tree index.

LEMMA 5.11 (PRUNING STRATEGY). Given an MBR R, if, for each object o in Oinf, R
does not intersect with S

q
o , then R can be pruned.

PROOF. It is obviously correct based on Lemma 5.10.

II. Enumerating the best group in the search space. Next, we cover how we do the
exhaustive search within the search space around an object containing tinf to find the
group with the smallest cost containing this object. We call this object the pivot in the
enumeration.

We adopt the depth-first search strategy to do the enumeration. We use selectedSet
to store those objects that are already selected in the current enumeration. The pivot
is always in selectedSet since it must be contained in the generated group. We use
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candidateSet to store the objects within S
q
pivot (the search space of the pivot with respect

to q) that are possible to combine with objects in selectedSet to form a group whose cost
is smaller than the current best group.

The first part of the cost function of the MAX+MAX SGK query is determined by the
furthest-away object from q in a group. Based on this fact, we first choose an object om
to be the furthest-away object and put it in selectedSet. Then, in the following search,
an object o j is disregarded if Dist(o j, q) > Dist(om, q). This means that candidateSet only
contains objects that are closer to q than is om. This greatly reduces the search space.

Then we append new objects from candidateSet to selectedSet; this step is performed
iteratively. An appended object must cover a query keyword that is not already covered
by the objects in selectedSet. The level of this depth-first search is equal to the number
of query keywords, because each object contains at least one new query keyword. The
current best cost curCost is updated when a group covering all the query keywords
with smaller cost is found.

Function enumerateBestGroup(S, pivot, curCost, q)
1 objList ← objects in S in ascending order of the distances to q;
2 candidateSet ← ∅;
3 for each object o in objList do
4 candidateSet ← candidateSet ∪ {o};
5 selectedSet ← {pivot, o};
6 pairDist ← Dist(pivot, o);
7 furDist ← max(Dist(pivot, q), Dist(o, q));
8 if candidateSet.ψ = q.ψ then
9 (cost, group) ← search(q, curCost, selectedSet, candidateSet, pairDist,

furDist, o.di);
10 if cost < curCost then curCost ← cost; curGroup ← group;
11 return curCost and curGroup;

The pseudocode is described in Function enumerateBestGroup. The first step is to
determine the furthest-away object. We process the objects in ascending order of their
distances to the query q (line 1). In line 4, each object is added to candidateSet one by
one to make sure that the last added object must be the furthest-away from the query
location. Set selectedSet initially contains only pivot and the furthest-away object we
chose, and hence pairDist and furDist are initialized correspondingly (lines 5–7). When
candidateSet can cover all the query keywords, we call the function search() to search
for the best solution containing pivot and o iteratively. If the new group found is better
than the current group, it becomes the current best one (lines 8–10).

Although we can bound the search space according to Lemma 5.9 given a pivot, un-
fortunately, if the number of candidate objects in the search space is still large, the time
cost of enumerating the best group prohibitively increases. We develop several pruning
strategies based on both textual and geometric properties to reduce the enumeration
in the function search().

Textual Pruning. A new object is added to the selected object set in each search step,
and selectedSet.ψ increases until it covers all the query keywords. Therefore, if an
object o cannot contribute any new keyword to the selected objects set, this object can
be ignored in the current search process. This means that it should not be inserted into
candidateSet for the current selectedSet.

Distance Pruning. Since the maximum distance to the query is already fixed (repre-
sented by furDist), the cost of any feasible solution is only determined by the second
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part in the cost function. Hence, if, after an object is added to selectedSet, the cost of
selectedSet exceeds curCost, then the current search process can be terminated because
further search can obtain no better groups.

Termination Condition. We can utilize the textual information to decide whether
the current search can be terminated. If the objects in candidateSet cannot cover
those keywords that have not been covered by selectedSet, we can stop since, even if we
select all the objects in candidateSet, a group covering all the query keywords cannot be
generated. Formally, if selectedSet.ψ ∪ candidateSet.ψ �⊇ query.ψ , we stop the current
search step.

Function search(q, curCost, selectedSet, candidateSet, pairDist, furDist, startId)
1 if selectedSet.ψ = q.ψ then
2 if furDist + pairDist < curCost then
3 curCost ← furDist + pairDist;
4 curGroup ← selectedSet;
5 return curCost and curGroup;
6 nextcandSet ← ∅;
7 leftKeywords ← ∅;
8 for each candidate object oc in candidateSet do
9 if oc.ψ ⊆ selectedSet.ψ then continue;

10 if oc.di < startId then continue;
11 selectedDiam ← 0;
12 for each selected object os in selectedSet do
13 selectedDiam ← max(selectedDiam, Dist(os, oc));
14 if selectedDiam+ furDist > curCost then continue;
15 nextcandSet ← nextcandSet ∪ {oc};
16 leftKeywords ← leftKeywords ∪ oc.ψ ;
17 if leftKeywords ∪ selectedSet.ψ �= query.ψ then
18 return curCost and curGroup;
19 for each object on in nextcandSet do
20 selectedSet ← selectedSet ∪ {on};
21 pairDist ← max(pairDist, selectedDiam);
22 (cost, group) ← search(q, curCost, selectedSet, nextcandSet, pairDist, furDist, on.di);
23 if cost < curCost then
24 curCost ← cost; curGroup ← group;
25 selectedSet ← selectedSet \ on;

The pseudocode is described in Function search . First, if selectedSet already covers
all the query keywords, we compare this group with the current best group, and return
the better one as the result (lines 1–5). Then we begin the depth-first search, and
append each object from candidateSet to selectedSet (lines 8–16). The textual pruning
strategy is shown in line 9. Line 10 is used to avoid a duplicate enumeration of the
same group. The distance pruning strategy is shown in lines 11–14. The termination
condition is checked in lines 17–18. Next, after we have appended a new object to
selectedSet, we call the function recursively to find those groups with the new candidate
objects set newcandSet and update curCost and curGroup correspondingly (lines 19–
25).

III. The final exact algorithm for the MAX+MAX SGK query. The exact algorithm is
presented in Algorithm 5. We use those IR-tree to find the objects containing the most
infrequent keyword tinf, and when the distance to q exceeds curCost, we terminate
the algorithm. After we get an object containing tinf, we first obtain its search range

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 13, Publication date: June 2015.



TODS4002-13 ACM-TRANSACTION May 22, 2015 8:12

13:24 X. Cao et al.

according to Lemma 5.9 utilizing the IR-tree (lines 16–25). Next, we call Function
enumerateBestGroup to find the best group containing this object (line 26), and we
use it to update the current best group (lines 27–29). Finally, we return curCost and
curGroup (line 30).

ALGORITHM 5: MAXMAX-Exact(q, irT ree)
1 U ← new min-priority queue;
2 U .Enqueue(irT ree.root, 0);
3 (curGroup, curCost) ← MAXMAX-Appro2(q, irT ree);
4 tinf ← the most infrequent keyword in q.ψ ;
5 while U is not empty do
6 p ← U.Dequeue();
7 if p is not an object then
8 if minDist(p, q) ≥ curCost then break;
9 foreach entry p′ in node p do

10 if tinf ∈ p′.ψ then
11 if p is a leaf node then
12 U .Enqueue(p′, Dist(p′, q));
13 else U .Enqueue(p′, minDist(p′, q));
14 else
15 if Dist(p, q) ≥ curCost then break;
16 S ← ∅;
17 W ← new min-priority queue;
18 W .Enqueue(irT ree.root,0);
19 while W is not empty do
20 p′ ← W .Dequeue();
21 if p′.Key > curCost then break;
22 if p′ is a node then
23 foreach node n in p′ do
24 if n.ψ ∩ q.ψ �= ∅ then W .Enqueue(n,LOWq(p, p′));
25 else S ← S ∪ p′;
26 (group, cost) ← enumerateBestGroup(S, p, curCost, q);
27 if cost < curCost then
28 curCost ← cost;
29 s curGroup ← group;
30 return curGroup and curCost;

Assume there are n query keywords, and that the number of relevant objects is m.
This algorithm performs the exhaustive search around each object containing the most
infrequent keyword, and there are at most O( m

n ) such objects. Assume that the number
of objects in the search range around an object is r in the worst case. The complexity of
this algorithm is O( m

n rn). Note that r is usually much smaller than m, and this is why
the algorithm outperforms the one in the previous work [Cao et al. 2011] significantly,
whose complexity is O(mn).

6. PROCESSING MIN+MAX SPATIAL GROUP KEYWORD QUERIES

6.1. Approximation Algorithm

We can use the algorithm MAXMAX-Appro1 to find a group for a given MIN+MAX SGK
query. That is, we find the nearest object for each query keyword, and the set of these
objects is returned as the result. The only difference is the way of computing the cost of
this group. We denote this algorithm by MINMAX-Appro. We show that MINMAX-Appro
is within an approximation factor of 3 as well.
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THEOREM 6.1. Given a MIN+MAX SGK query q, the cost of the group Gapp returned
by MAXMAX-Appro1 is at most 3 times the cost of the optimal group Gopt.

PROOF. Let o f denote the furthest-away object from q in Gapp, and let d = Dist(o f , q).
For the solution Gapp, the largest possible distance between two objects in Gapp is 2d,
and the largest possible minimum distance between an object in Gapp and q is d. Object
o f must contain some keyword t that is not covered by any other object in Gapp. The
optimal group must contain an object containing t. Since o f is the nearest one with
respect to t, Gopt must contain an object whose distance to q is no smaller than d. Denote
on as the nearest object to q and ot as the object containing t in Gopt. The maximum
distance between any two objects in Gopt must be no smaller than Dist(on, ot). Thus
we can obtain Cost(Gopt, q) ≥ Dist(on, q) + Dist(on, ot) ≥ Dist(ot, q) ≥ d, according to the
triangle inequality. Finally, we have Cost(Gapp, q) ≤ d + 2d ≤ 3 · Cost(Gopt, q).

THEOREM 6.2. When α is enabled in the cost function, the approximation ratio of
MINMAX-Appro is 2

α
− 1 when α < 0.5 and 2−α

1−α
when α ≥ 0.5.

PROOF. When α is enabled in the cost function, matters are more complex. Let o f be
the furthest-away object in Gapp, let on be the nearest object in Gopt, and let ot be the
object that contains the same query keyword as does o f in Gopt. Hence it is true that
Dist(on, q) ≤ Dist(ot, q) and that Dist(o f , q) ≤ Dist(ot, q).

It is obvious that Cost(Gapp, q) ≤ αDist(o f , q) + 2(1 − α)Dist(o f , q) = (2 − α)Dist(o f , q).
For the optimal group, Cost(Gopt, q) ≥ αDist(on, q) + (1 − α)Dist(on, ot) ≥ (2α −
1)Dist(on, q) + (1 − α)(Dist(on, q) + Dist(on, ot)). According to the triangle inequality,
Cost(Gopt, q) ≥ (2α − 1)Dist(on, q) + (1 − α)Dist(ot, q).

When α ≥ 0.5, the smallest value of Dist(on, q) is zero, and thus Cost(Gopt, q) ≥
(1 − α)Dist(ot, q) ≥ (1 − α)Dist(o f , q), and we have Cost(Gapp,q)

Cost(Gopt,q) ≤ 2−α
1−α

. When α < 0.5, since
Dist(on, q) is at most Dist(ot, q), we know that Cost(Gopt, q) ≥ αDist(ot, q) ≥ αDist(o f , q),
and thus Cost(Gapp,q)

Cost(Gopt,q) ≤ 2−α
α

.

6.2. Exact Algorithm

It is challenging to develop an exact algorithm for MIN+MAX SGK queries as well,
since exhaustive search in the object space is also required. We follow the idea of the
MAXMAX-Exact algorithm to design the exact algorithm for the MIN+MAX SGK query.

We first utilize the MINMAX-Appro algorithm to derive an upper bound for the optimal
group of a given MIN+MAX SGK query q. Then we process those objects containing the
most infrequent query keyword tinf in ascending order of their distances to the query
q. We still call such an object a pivot. Around each pivot, we first bound the exhaustive
search space, that is, we find all those objects with which it is possible to form a group
whose cost is smaller than that of the current best group with the pivot. Then, within
this search space, we do an exhaustive search similar to that in MAXMAX-Exact to find
the best group containing the pivot, and update the current best cost correspondingly.

I. Bounding the exhaustive search space around an object containing tinf . Recall that,
in the MAXMAX-Exact algorithm, given a pivot object oi, the maximum distance to q of
a group containing oi must be larger than the distance of oi to q. However, Dist(oi, q)
cannot bound the minimum distance to q of a group containing oi, which could even be
zero. Thus the search space around a pivot in the MIN+MAX SGK query is different
from that of the MAX+MAX SGK query.

LEMMA 6.3. Given a MIN+MAX SGK query q and an object oi containing tinf , the
most infrequent keyword in q.ψ , the search space around oi is CcurCost

oi
∩ CcurCost

q , where
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Fig. 4. Exhaustive search space around oi containing tinf .

curCost is the current best cost. With a slight abuse of notation, we denote this area by
S

q
oi as well.

PROOF. Denote a group containing both oi and o j as Goi ,o j . First, if an object o j whose
distance to oi is larger than curCost, then Goi ,o j must have cost larger than curCost.
Thus the candidate objects must be within the range of CcurCost

oi
. Second, denote the clos-

est object to q in Goi ,o j as on. Then Cost(Goi ,o j , q) = Dist(on, q) + maxr1,r2∈χ (Dist(r1, r2)) ≥
Dist(on, q) + Dist(on, o j) ≥ Dist(o j, q). Hence, if Goi ,o j has smaller cost than does curCost,
then o j must have distance to q smaller than curCost. Therefore o j is in the range of
CcurCost

oi
∩ CcurCost

q . Figure 4 illustrates the proof.

II. Enumerating the best group in the search space. We introduce how we do the ex-
haustive search within the search space around the pivot for a given MIN+MAX SGK
query.

This step is similar to that of the MAXMAX-Exact algorithm. We adopt the depth-first
search strategy to do the enumeration, and use selectedSet and candidateSet to store
those objects already selected and the candidate objects that could contribute to the
best group containing the pivot with objects in selectedSet.

Since the first part of the cost function of the MIN+MAX SGK query is determined
by the nearest object to q in a group, we first choose an object on to be the nearest
object to q and put it into selectedSet. Then, in the following search, an object o j should
not be taken into consideration if Dist(o j, q) < Dist(on, q). We process the objects in
ascending order of their distances to q. The text pruning and the distance pruning
strategies are still applicable, and the termination condition is also the same as that
in MAXMAX-Exact.

The exact algorithm for the MIN+MAX SGK query is similar to Algorithm 5. We use
the IR-tree to find those objects containing the most infrequent keyword tinf and, when
the distance to q exceeds curCost, we terminate the algorithm. After we get an object
containing tinf , we first obtain its search range according to Lemma 6.3 utilizing the
IR-tree. Then we do exhaustive search enhanced with the pruning strategies to find
the best group containing the pivot. After each pivot is processed, we return the group
with the smallest cost.

Assume that there are n query keywords, the number of relevant objects is m, and the
number of objects in the search range around an object is r in the worst case. Similar
to MAXMAX-Exact, the complexity of this algorithm is also O( m

n rn).
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7. PROCESSING TOP-K SPATIAL GROUP KEYWORD QUERIES

The proposed algorithms for answering the SGK queries can easily be extended to an-
swer the corresponding top-k SGK (kSGK) queries. We cover the exact top-k algorithms
for the SUM, MAX+MAX, and MIN+MAX SGK queries in Section 7.1, Section 7.2, and
Section 7.3, respectively.

7.1. Top-k SUM SGK Query

We extend the exact algorithm presented in Section 4.2 to efficiently answer the SUM
kSGK query. We still utilize the IR-tree, and we process the objects in ascending order
of their distances to a given query q. To find the top-k results, the stopping condition
is changed to these two: (1) we reach the k-th object covering all the query keywords;
and (2) we reach an object such that its distance to q is larger than that of the current
k-th group covering all the query keywords.

The idea of this algorithm is as follows. We use an array of priority queues to store
the top-k groups for each query keyword subset. Each group is represented by a 3-tuple
(cost, objects, status). We utilize the IR-tree to process objects that contain some query
keywords according to ascending order of their distances to the query, as we do in
Algorithm 2.

In the SUM-ExactWIndex algorithm, each query keyword subset has a status telling
whether its lowest cost has been found. This can be used to prune objects and MBRs
that cover a subset that already has the lowest cost. We need to do similarly for finding
the top-k results. Since each keyword subset has k groups, we also need to keep track
of the status for each of them, that is, whether they are really in the top-k list of this
keyword subset. When we reach an object e, those groups with cost values smaller than
the distance of e to q change their status to “marked.” When all the top-k groups of a
keyword subset have status “marked,” the status of this subset is changed to “marked,”
and it is further used to prune objects and MBRs.

The object e is then used to update the top-k groups of each keyword subset that is
a subset of e.ψ ∩ q.ψ . If this object is the k-th group of a keyword subset, we know
that all the top-k groups have been found for this subset, and we move it to markedSet.
Finally, this object e is used to generate new groups with existing groups, as done in
lines 35–44 in SUM-ExactWIndex. We enumerate each query keyword subset and, for
each group of this subset, it is combined with e to generate a new group for the keyword
subset that is the union of e.ψ and the current keyword subset. When the termination
condition is satisfied, we stop the algorithm and return the k groups obtained.

In this algorithm, we maintain k groups for each keyword subset and, when we
generate a new group for a keyword subset, we need to compare it with the existing
groups of this subset, which has time complexity O(log k). Thus the complexity of this
algorithm is O(k log k) times that of algorithm SUM-ExactWIndex.

7.2. Top-k MAX+MAX SGK Query

It is straightforward to extend the MAXMAX-Exact algorithm to answer the MAX+MAX
kSGK query. Recall that in MAXMAX-Exact, we first invoke MAXMAX-Appro2 to obtain
a feasible group, the cost of which serves as an upper bound on the optimal cost. This
upper-bound cost can be utilized to obtain an exhaustive search range that is updated
during the search. Thus we just need to first obtain k groups approximately, and then
we can do the same exhaustive search as in MAXMAX-Exact to find the k best groups.

We extend the MAXMAX-Appro1 algorithm to approximately find k feasible groups.
First, we invoke MAXMAX-Appro1 to find a feasible group G1. Then, all the objects in
G1 are inserted into a queue in ascending order of their distances to q. We find the
nearest object on to q from the queue and, for each keyword in on.ψ , we find the next
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nearest object containing this word, and replace on with these objects to obtain a new
group G2. The objects in G2 not accessed yet are also inserted into the queue according
to their distances to q. We similarly process all the remaining objects in the queue.
After selecting an object from the queue, we find all the discovered groups containing
it, and we replace this object with further objects covering the same keyword subset in
those groups to generate new groups. We stop this procedure when k groups are found.

After we find k feasible groups, the largest cost of these groups is the upper bound
of the cost of the exact k-th group, and we denote this value by curCostk. Then we
find the most infrequent query keyword tinf , and we process the objects containing
tinf (the pivot) in ascending order of their distances to q. For each pivot, we obtain a
search space utilizing Lemma 5.9 by replacing curCost with curCostk, and we find the
best group containing the pivot by invoking Function enumerateBestGroup. If we find
a group whose cost is smaller than curCostk, we update the top-k list of groups and
the value of curCostk. When we reach an object whose distance is even larger than
curCostk, we can stop and return the k groups already found. We denote this algorithm
as TOPK-MAXMAX-Exact.

7.3. Top-k MIN+MAX SGK Query

Similar to the exact algorithm for processing the MAX+MAX kSGK query, we extend
the MINMAX-Exact algorithm to answer the MIN+MAX kSGK query. We still use the
method introduced in Section 7.2 to approximately find k groups, and we initialize
the current best k-th group’s cost, curCostk, as the largest cost of these groups. Then
we find the most infrequent query keyword tinf , and utilize Lemma 6.3 to obtain the
search space around a pivot, that is, an object containing tinf . We process the pivots
in ascending order of their distances to q until we reach a distance to q that exceeds
curCostk. We denote this algorithm as TOPK-MINMAX-Exact.

8. WEIGHTED SPATIAL GROUP KEYWORD QUERY

We present the processing of the weighted SUM, MAX+MAX, and MIN+MAX SGK
queries in Sections 8.1, 8.2, and 8.3, respectively.

8.1. Processing the Weighted SUM SGK Query

The cost function of the weighted SUM SGK query is defined as Cost(q, χ ) =∑
o∈χ wDist(o, q), where the inter-object relationship is not considered. Hence this query

can be easily answered by modifying the approximation and exact algorithms for the
SUM SGK query. We only need to replace the original Euclidean distance by the
weighted distance in the algorithms as introduced in Sections 4.1 and 4.2.

The following lemma makes it possible to estimate the lower bound of the weight of
an object in a given IR-tree node R, given a query q. We define Wt(R, q) = e−Sim(R,q),
where Sim(R, q) computes the relevance between q and the pseudo document of R.

LEMMA 8.1. Given a query q and an IR-tree node R, ∀ o ∈ R (Wt(o, q) ≥ Wt(R, q)).

PROOF. Recall that in R.ψ , the weight of each term is the maximum weight of t in
any document contained in the subtree rooted at node R. Hence, according to Eq. (2),
it is true that ∀ o ∈ R (Sim(o, q) ≤ Sim(R, q)) and thus Wt(o, q) ≥ Wt(R, q).

With Lemma 8.1, we are able to compute the lower bound of the weighted distance
of any object o in a given node R to q as Wt(R, q) · minDist(R, q) since minDist(R, q) is
the minimum distance from q to R.

In order to answer the weighted SUM SGK query approximately, we only need to
modify Algorithm 1 as follows: in line 19, we compute dist as Wt(p′, q)·minDist(p′, q); and
in line 20, we compute dist as wDist(p′, q). The approximation ratio of this algorithm
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remains
∑n

i=1
1
i , where n is the number of query keywords. The complexity of the

algorithm also does not change.
The exact algorithm can be obtained by modifying Algorithm 2 as follows: in line 12,

we enqueue a node p′ into the queue using key Wt(p′, q) · minDist(P ′, q); and we replace
all Dist(o, q) by wDist(o, q) in lines 15, 19, 30, and 41. The complexity of the algorithm
is unaffected.

When the weight is computed as a user rating or popularity score which is dependent
on the query, it is easier to compute Wt(R, q). We just need to store the minimum value
of Wt(o, q) in each node R in the IR-tree when building the index.

8.2. Processing the Weighted MAX+MAX SGK Query

8.2.1. Approximation Algorithm. Recall that in Algorithm 3 we find the nearest object for
each keyword in query q, and we then use the group of these objects to answer the
unweighted query. In the weighted MAX+MAX query, this method is not appropriate
since the nearest object may have a low weight. Hence, we propose to find instead that
object for each query keyword with the smallest weighted distance, that is, for each
keyword t ∈ q.ψ , we find object ot = arg mint∈ot .ψ (wDist(ot, q)), and we return the group
Gapp = ⋃

t∈q.ψ ot. We call this algorithm WMAXMAX-Appro. The following theorem gives
an approximation ratio for the algorithm.

THEOREM 8.2. The approximation ratio of WMAXMAX-Appro is 1+2e.

PROOF. Let o f be the furthest-away object, let ow be the object that has the
largest weighted distance to q in Gapp, and let d = wDist(ow, q). Denoting the op-
timal group by Gopt, we have Cost(Gopt) ≥ d since there must exist an object
in Gopt containing the same query keyword as does ow. The largest diameter of
Gapp is 2Dist(o f , q). Since Wt(o f , q) · Dist(o f , q) ≤ d, Dist(o f , q) ≤ d/Wt(o f , q). Hence

Cost(Gapp) ≤ d + maxo∈Gapp Wt(o,q)
Wt(of,q) 2d. Because maxo∈Gapp Wt(o, q) ≤ 1 and Wt(o f , q) ≥ e−1,

we obtain Cost(Gapp) ≤ (1 + 2e)Cost(Gopt).

If the object weights represent other keyword-independent attributes such as user
ratings, the ratio for the algorithm is 1 + 2ewmax−wmin, where wmax is the maximum
weight and wmin the minimum weight. This is because maxo∈Gapp Wt(o, q) ≤ e−wmin and
Wt(o f , q) ≥ e−wmax and, similar to the proof of Theorem 8.2, we obtain Cost(Gapp) ≤
(1 + 2ewmax−wmin)Cost(Gopt).

8.2.2. Exact Algorithm. The MAX+MAX query is the special case of the weighted
MAX+MAX query where all objects have the same weight, and thus it is more chal-
lenging to develop an exact algorithm for the weighted MAX+MAX query.

To compute the weighted query, we first invoke WMAXMAX-Appro to derive a feasible
group of objects. We then calculate the cost of this group, which is an upper bound on
the cost of the optimal group for a given query. Then we follow the idea of MAXMAX-
Exact to process those objects containing the most infrequent query keyword tinf in
ascending order of their weighted distance. Without loss of generality, we still call such
an object a pivot. We bound the space to search around each pivot by checking whether
an object o and the pivot can together form a group that has a cost smaller than the
current best cost. Finally, we perform an exhaustive search with the following pruning
strategies in each search space, and update the current best cost correspondingly.

I. Bounding the exhaustive space around an object containing tinf. We can reduce the
exhaustive search around an object containing tinf in a similar way as for MAXMAX-
Exact.
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LEMMA 8.3. Given a weighted MAX+MAX SGK query q and two objects oi and o j,
a lower-bound value of the cost of a group G containing oi and o j can be computed by
max(wDist(oi, q), wDist(o j, q)) + max(Wt(oi, q), Wt(o j, q)) · Dist(oi, o j). We call this value
LOWq(oi, o j) (with a slight abuse of notation).

PROOF. First, we have max(wDist(oi, q), wDist(o j, q)) ≤ maxo∈G(wDist(o, q)). It is also
true that max(Wt(oi, q), Wt(o j, q)) · Dist(oi, o j) ≤ maxo∈G Wt(o, q) · maxo1,o2∈G Dist(o1, o2),
and thus LOWq(oi, o j) ≤ Cost(q, G).

If LOWq(oi, o j) exceeds curCost (the current best cost, initialized as the cost obtained
by WMAXMAX-Appro), we know that oi and o j cannot contribute to the optimal group
together. Since the distance is no longer the only criterion when computing the cost, we
cannot determine a region as in Lemma 5.9 because the weight of the object is unknown.
However, given a pivot o, we can find all candidate objects that can be combined with
it to form the optimal group using Lemma 8.3. That is, the search space around a pivot
o is {ox|LOWq(o, ox) < curCost}.
II. Enumerating the best group in the search space. We proceed to explain how to
exhaustively search around a pivot. The procedure is similar to that of the MAXMAX-
Exact algorithm. We adopt the depth-first search strategy to do the enumeration, and
we maintain two sets selectedSet and candidateSet to store the selected objects and
the candidate objects that can possibly contribute to the optimal group containing the
pivot with objects in selectedSet.

We enumerate the objects in ascending order of their weighted distances to the query.
When processing an object om, we assume it is the object that has the largest weighted
distance in the group and put it in selectedSet. Then, in the subsequent search, we
only consider objects whose weighted distance is smaller than wDist(om, q). The text
pruning and the termination condition are the same as in MAXMAX-Exact. In the
distance pruning strategy, we need to compute the cost of selectedSet under the new
cost function to check whether it exceeds curCost.

The algorithm can be obtained by modifying Algorithm 5 as follows: (1) We order
the priority queue by the weighted distance instead of the original distance to q. In
line 12, we replace Dist(p′, q) by wDist(p′, q); and in line 13, we replace minDist(p′, q)
with Wt(p′, q) · minDist(p′, q); (2) In line 24, we compute LOWq(p, p′) as in Lemma 8.3
rather than as in Lemma 5.8.

8.3. Processing the Weighted MIN+MAX SGK Query

8.3.1. Approximation Algorithm. The algorithm WMAXMAX-Appro can be used to find a
group for a given weighted MIN+MAX query as well. We show that this algorithm also
has a performance bound when used to answer the weighted MIN+MAX query.

THEOREM 8.4. Given a weighted MIN+MAX query q, the cost of the group Gapp re-
turned by WMAXMAX-Appro is at most 3e2 times the cost of the optimal group Gopt.

PROOF. Let o f be the furthest-away object in Gapp, and ow be the object in Gapp
that has the smallest weighted distance to q. Hence Cost(Gapp, q) ≤ wDist(ow, q) +
2 maxo∈Gapp(Wt(o, q)) · Dist(o f , q). Since ow has the smallest weighted distance, that
is, wDist(ow, q) ≤ wDist(o f , q), Cost(Gapp, q) ≤ wDist(o f , q) + 2 maxo∈Gapp(Wt(o, q)) ·
Dist(o f , q) ≤ 3 maxo∈Gapp(Wt(o, q)) · Dist(o f , q).

Let ot be the object that contains the same query keyword as does o f in Gopt, and on
be the object that has the smallest weighted distance in Gopt. Hence Cost(Gopt, q) ≥
wDist(on, q) + maxo∈Gopt (Wt(o, q)) · Dist(on, ot) ≥ Wt(on, q) · (Dist(on, q) + Dist(on, ot)) ≥
Wt(on, q) · Dist(ot, q).
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According to the algorithm, wDist(o f , q) ≤ wDist(ot, q), and we get Dist(of,q)
Dist(ot,q) ≤ Wt(ot,q)

Wt(of,q) ≤
e. Finally, we obtain Cost(Gapp,q)

Cost(Gopt,q) ≤ 3 maxo∈Gapp Wt(o,q)·Dist(of,q)
Wt(on,q)·Dist(ot,q) ≤ 3e2.

Generally, let wmax be the maximum weight and wmin be the minimum weight, we
obtain the ratio 3e2(wmax−wmin) for this algorithm. This is because Cost(Gapp,q)

Cost(Gopt,q) ≤ e(wmax−wmin)

and maxo∈Gapp Wt(o,q)
Wt(on,q) ≤ e(wmax−wmin).

8.3.2. Exact Algorithm. We first utilize the WMAXMAX-Appro algorithm to derive a
feasible group of objects. We then calculate the cost using the weighted MIN+MAX cost
function. The cost is then an upper bound on the cost of the optimal group of a given
query q. Then we follow the idea of MINMAX-Exact to process those objects containing
the most infrequent query keyword tinf in ascending order of their weighted distances
to the query. We bound the search space around each pivot. That is, we find all objects
that are possible to combined with the pivot to form a group with a cost that is smaller
than that of the current best group. Finally, we perform an exhaustive search with the
pruning strategies around each pivot and accordingly update the current best cost.
I. Bounding the exhaustive space space around an object containing tinf . Recall that, in
the MINMAX-Exact algorithm, we utilize Lemma 6.3 to obtain the search space around
a pivot. However, distance is not the only factor when computing the cost of a group in
a weighted query. The following lemma can be used to bound the search space around
a pivot.

LEMMA 8.5. Given a weighted MIN+MAX query q and an object oi containing tinf , the
most infrequent keyword in q.ψ , an object o j can be pruned in the search space around oi
if max(Wt(oi, q), Wt(o j, q)) · Dist(oi, o j) > curCost, where curCost is the current best cost.

PROOF. It is obvious that max(Wt(oi, q), Wt(o j, q)) · Dist(oi, o j) ≤ maxo∈G Wt(o, q) ·
maxo1,o2∈G Dist(o1, o2). Thus we can never obtain a group with cost less than curCost if
both of oi and o j are selected.

II. Enumerating the best group in the search space. The procedure is similar to that
of the MINMAX-Exact algorithm. We adopt the depth-firstsearch strategy to do the
enumeration, and we maintain two sets, selectedSet and candidateSet, to store the
selected objects and candidate objects that may contribute to the optimal group
containing the pivot with objects in selectedSet. We then enumerate the objects in
ascending order of their weighted distances to the query. We first choose an object om
to be the object with the minimum weighted distance to q. In subsequent search, only
objects with weighted distance smaller than wDist(om, q) are considered. The pruning
strategies remain applicable. The only difference is that we do distance pruning using
the weighted MIN+MAX cost function.

9. EXPERIMENTAL STUDY

9.1. Experimental Settings

Algorithms. For the SUM spatial group keyword query, we consider the approximation
algorithm from Section 4.1 (denoted by SUM-A for short), and the exact algorithm
utilizing the IR-tree from Section 4.2 (denoted by SUM-E). We also show the results
of the exact algorithm when using the IR-tree [Cao et al. 2011], which is denoted
by SUM-EP. For the MAX+MAX spatial group keyword query, we evaluate the
two approximation algorithms from Sections 5.1 and 5.2 (denoted by MAXM-A1
and MAXM-A2, respectively) and the exact algorithm from Section 5.3 (denoted by
MAXM-E). We also evaluate the approximation algorithm and the exact algorithm
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Table VII. Dataset Properties

Property Web GN Hotel
Number of objects 579,727 1,868,821 20,790

Number of unique words 2,899,175 222,409 602
Number of words 249,132,883 18,374,228 80,845

proposed in the previous work [Cao et al. 2011], denoted by MAXM-AP and MAXM-EP,
respectively. We compare our algorithms with the approximation algorithm and the
exact algorithm proposed in the work Long et al. [2013] as well, denoted by LONG-A
and LONG-E, respectively. For the MIN+MAX spatial group keyword query, we study
the approximation algorithm from Section 6.1 (denoted by MINM-A) and the exact
algorithm from Section 6.2 (denoted by MINM-E).

We also conduct experiments with the algorithms for kSGK queries, that is, the
exact algorithm of the top-k SUM SGK query from Section 7.1 (denoted by K-SUM-E
for short), the exact algorithm (denoted by K-MAXM-E) of the top-k MAX+MAX
SGK query from Section 7.2, and the exact algorithm (denoted by K-MINM-E) of
the top-k MIN+MAX SGK query from Section 7.3. The approximation and exact
algorithms for the weighted SUM, MAX+MAX, and MIN+MAX SGK queries are also
evaluated, denoted by WSUM-A, WSUM-E, WMAXM-A, WMAXM-E, WMINM-A, and
WMINM-E, respectively.

Dataset and queries. We use three datasets. Table VII shows some properties of these
datasets. Dataset GN is extracted from the U.S. Board on Geographic Names (geonames.
usgs.gov). Here, each object is a location with a geographic name (e.g., valley). Dataset
Web is generated from two real datasets. The first is WEBSPAM-UK20072 that
consists of a large number of Web documents; the second is a spatial dataset con-
taining the tiger Census blocks in Iowa, Kansas, Missouri, and Nebraska (www.
rtreeportal.org). We randomly combine Web documents and spatial objects to get the
Web dataset. Dataset Hotel contains spatial objects that represent hotels in the U.S.
(www.allstays.com). Each object has a location and a set of words that describe the
hotel (e.g., restaurant, pool). Hotel is small and is used to evaluate the performance
of our algorithms when the dataset and index are memory resident, and the other two
large datasets are used to evaluate our algorithms when the dataset and index are disk
based.

We generate five query sets in the space of GN, in which the number of keywords is
2, 4, 6, 8, and 10, respectively. We also generate five similar query sets in the space of
both Web and Hotel. Each set comprises 50 queries. When generating a query set with
n keywords, we randomly select n objects from the dataset and then select a keyword
from each object as a query keyword, and the centerpoint of these objects is used as
the query location. Such queries would need similar processing time, and we report
the average cost of queries in each query set. We also conduct experiments on queries
generated in other ways, and a summary of the experimental results is presented in
Section 9.2.4.

Setup. The IR-tree index structure is disk resident, and the page size is 4KB. The
number of children of a node in the IR-tree is computed given the fact that each node
occupies a page. This translates to 100 children per node in our implementation. All
algorithms were implemented in C++ and run in Windows 7 System on an Intel(R)
Xeon(R) CPU E5-1620 @2.66 GHz with 8GB RAM.

2http://barcelona.research.yahoo.net/webspam/datasets/uk2007.
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Fig. 5. Results of SUM SGK queries on Hotel.

9.2. Experimental Results on SGK Queries

9.2.1. The SUM SGK Query.

I. Results on Hotel. This experiment studies the performance of our algorithms when
the dataset and index are in memory. Specifically, we study the efficiency and accuracy
of the four algorithms when we vary the number of query keywords on Hotel.

Figure 5(a), where the y-axis is in logarithmic scale, shows the runtime of the five
algorithms on Hotel. As expected, the approximation algorithm SUM-A runs faster
than all the exact algorithms, that is, SUM-E and SUM-EP. The runtime of the
approximation algorithm SUM-A increases almost linearly with the number of query
keywords. It is understandable that its running time is proportional to the number
of query keywords: SUM-A keeps searching for the object with the lowest cost that
covers part or all of the query keywords, and it terminates when a group of objects
that covers the query keywords has been found.

For the exact algorithms, SUM-E avoids scanning objects that do not contain query
keywords by utilizing the IR-tree and can avoid accessing those objects whose dis-
tances to the query are larger than the cost of the discovered group, thus significantly
pruning the search space. The experimental results demonstrate the usefulness of
the IR-tree-based pruning strategies. SUM-EP also utilizes the IR-tree. However, as
analyzed in Section 4.2, when we reach an object e, all the keyword subsets of e.ψ are
considered in SUM-EP, which takes more time. Hence it runs slower than SUM-E.

It can also be observed that the runtime of both exact algorithms increases with
the number of query keywords; however, the increase is not exponential. The reason
is that computing the costs of objects dominates the running time over the dynamic
programming component.

Figure 5(b) shows the accuracy of SUM-A on Hotel. It shows that the approximation
algorithm is capable of achieving very accurate results.

We also conduct experiments on Hotel when the data and index are disk based, and
we observe qualitatively similar results.

II. Results on GN. The objective of this set of experiments is to study the efficiency and
accuracy of the four algorithms when we vary the number of query keywords on GN.
Figure 6(a) shows the runtime of the algorithms on the dataset GN, and Figure 6(b)
shows the accuracy of SUM-A on GN.

Since this dataset contains a large amount of objects, the gap between the running
time of the approximation algorithm and the exact algorithms is quite obvious. We can
see the approximation algorithm SUM-A runs much faster than the exact algorithms.
The runtime of the approximation algorithm SUM-A increases almost linearly with
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Fig. 6. Results of SUM SGK queries on GN.

Fig. 7. Results of SUM SGK queries on Web.

the number of query keywords. We can also see that SUM-E still outperforms SUM-EP
over all five query sets.

The I/O cost is consistent with the runtime and thus not reported.

III. Results on Web. This experiment studies the efficiency and accuracy on the dataset
Web in which each object is associated with a large set of keywords. Figure 7(a) shows
the runtime of the algorithms SUM-A, SUM-E, and SUM-EP, and Figure 7(b) shows
the accuracy of SUM-A. We observe qualitatively similar results on Web as on GN.

9.2.2. The MAX+MAX SGK Query. We first evaluate the performance of our algorithms
on the three datasets, and then compare our approximation and exact algorithms with
the algorithms proposed by Long et al. [2013].

I. Results on Hotel. This experiment studies the performance of our algorithms when
the dataset and index are in memory. Specifically, we study the efficiency and accuracy
of our three approximation algorithms (i.e., MAXM-A1, MAXM-A2, and MAXM-AP)
and two exact algorithms (i.e., MAXM-E1 and MAXM-EP) when we vary the number
of query keywords on Hotel.

Figure 8(a) shows the runtime of these algorithms, and Figure 8(b) shows the
accuracy of the approximation algorithms. Note that, due to the hardness of answering
the MAX+MAX SGK query, the exact algorithm may spend too much time on finding
the optimal group (for some queries, the two algorithms cannot return an answer
within one day). Therefore, to ensure the readability of the figures, we set a timeout
threshold to 5 minutes. If the exact algorithm fails to find a group within this threshold
for a query, we terminate the algorithm. Figure 8(c) shows the success rate of the three

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 13, Publication date: June 2015.



TODS4002-13 ACM-TRANSACTION May 22, 2015 8:12

Efficient Processing of Spatial Group Keyword Queries 13:35

Fig. 8. Results of MAX+MAX SGK queries on Hotel.

exact algorithms, that is, the percentage of queries on which the two algorithms can
return an answer within the predefined timeout threshold.

As can be seen, MAXM-A1 outperforms MAXM-A2 and MAXM-AP in terms of run-
time, and the accuracy of MAXM-A1 is worse than those of MAXM-A2 and MAXM-AP.
This is because MAXM-A1 terminates once a group of nearest objects covering each
query keyword is found. In contrast, MAXM-A2 and MAXM-AP invoke MAXM-A1
multiple times. MAXM-A2 runs slightly faster than does MAXM-AP, but this small dif-
ference is not visible in the figure. The reason for the difference is that we only invoke
MAXM-A1 on those objects containing the most infrequent query keywords. MAXM-A1
usually needs fewer invocations than MAXM-AP. Both MAXM-A2 and MAXM-AP
achieve good accuracy compared with the optimal group returned by MAXM-E.

MAXM-E and MAXM-EP are able to find the optimal group. Due to their time
complexity, they are much slower than the approximation algorithms. As expected,
with an increase in the number of keywords, the runtime of MAXM-E increases
exponentially due to its exhaustive search around pivot objects. MAXM-EP performs
much worse than MAXM-E because it spends too much time on enumerating the
possible combinations of IR-tree nodes. As shown in Figure 8(c), the success rate of
MAXM-EP drops dramatically as the number of query keywords increases. It is able
to give an answer only on 10% of the queries (five queries) when we set the number of
query keywords to 10. MAXM-E can answer almost all the queries, and only fails on
three queries containing 10 keywords.

When the number of keywords is small (e.g., no larger than 10), the runtime of the
exact algorithms is reasonable for applications without a high demand on the query
time, for instance, finding research partners. However, the approximation algorithms
represent a better option when query time is essential.

II. Results on GN. Figure 9(a) shows the runtime of MAXM-A1, MAXM-A2, MAXM-AP,
MAXM-E, and MAXM-EP, Figure 9(b) shows the accuracy of MAXM-A1, MAXM-A2,
and MAXM-AP, and Figure 9(c) shows the success rate of MAXM-E and MAXM-EP.
Because GN contains a large number of objects, the number of candidate objects is
usually large and thus the query time is much longer than that on Hotel. The success
rate of MAXM-E drops quickly as the number of query keywords increases. MAXM-EP
can only find the answer for one query on the query set containing eight keywords,
and fails on all queries when the number of query keywords is 10.

We also notice that, when the query contains very few keywords, MAXM-AP may
perform better than MAXM-A2. The reason may be that, in MAXM-A2, we only invoke
MAXM-A1 on objects within a certain range around the query point containing the
most infrequent query keyword. However, the keyword frequency is computed based
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Fig. 9. Results of MAX+MAX SGK queries on GN.

Fig. 10. Results of MAX+MAX SGK queries on Web.

on the whole dataset, and thus the “globally” most infrequent keyword may not be the
most infrequent keyword within the candidate range around the query point.
III. Results on Web. Figure 10(a) shows the runtime of MAXM-A1, MAXM-A2,
MAXM-AP, MAXM-E, and MAXM-EP, Figure 10(b) shows the accuracy of MAXM-A1,
MAXM-A2, and MAXM-AP, and Figure 10(c) shows the success rate of MAXM-E and
MAXM-EP. We observe qualitatively similar results on Web as we do on Hotel.
IV. Comparison with Existing Work. Long et al. [2013] study the problem of answering
MAX+MAX SGK queries. We first briefly review their approximation algorithm
(denoted by LONG-A) and their exact algorithm (denoted by LONG-E) and then we
compare our algorithms with these two.

LONG-A processes the objects containing at least one query keyword in ascending
order of their distances to query q. On each such object o, it invokes MAXM-A1 to find
a group for query 〈o.λ, q.ψ \ o.ψ〉, and then it computes the cost of this group with
respect to the original query q. If the group is better than the current best group, the
current best cost is updated. It terminates when reaching an object whose distance
exceeds the current best cost. LONG-A has an approximation ratio 1.375.

LONG-E uses the concept of “query distance owner” of a group, which is the
furthest-away object to the query in the group, and the “pairwise distance owners”
of a group, which is the pair of two objects that have the largest distance. Then,
the query distance owner and the pairwise distance owners are enumerated to find
the optimal group. The objects are processed in ascending order of their distances
to the query during the enumeration. Each object o is selected as the query distance
owner. Then, each pair of objects (o1, o2) (o1 and o2 are closer to q than is o) is selected
as the pairwise distance owners. Next, groups with o as the furthest-away object and
(o1, o2) as the pair contributing the largest diameter are enumerated. If a better group
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Fig. 11. Comparison of approximation algorithms on Hotel.

Fig. 12. Comparison of exact algorithms on Hotel.

is found, the current best cost is updated. This process is repeated until reaching an
object whose distance exceeds the current best cost.

We first compare our algorithms with LONG-A and LONG-E on Hotel, where the
dataset and index are kept in memory3.

Figures 11(a) and 11(b) show the comparison of our approximation algorithms
MAXM-A2 and MAXM-AP with LONG-A in terms of efficiency and accuracy, re-
spectively. Because MAXM-A2, MAXM-AP, and LONG-A all outperform MAXM-A1
significantly with respect to accuracy, we do not show the results of MAXM-A1 here.
It can be observed that LONG-A always achieves better accuracy and is able to
return nearly optimal results. However, since it needs to invoke MAXM-A1 on all
candidate objects containing at least one query keyword, it runs much slower than
does MAXM-A2 which only considers objects containing the most infrequent keyword.
MAXM-AP first finds the keyword only covered by the furthest-away object in the
group found by MAXM-A1, and then it invokes MAXM-A1 on each object containing
such keyword; thus it is also much faster than LONG-A.

Figure 12(a) shows the success rate of the exact algorithms MAXM-E, MAXM-EP,
and LONG-E. Algorithm MAXM-E is able to successfully return results for most
queries, and has a much better success rate than do MAXM-EP and LONG-E. LONG-E
can only answer all 50 queries containing two keywords, and fails on three queries
among those that contain four keywords.

The queries that LONG-E and MAXM-EP can process within the time threshold
are always a subset of those that can be answered by MAXM-E. To compare the three

3The code implementing LONG-A and LONG-E is provided by the authors of Long et al. [2013].
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Fig. 13. Comparison of approximation algorithms on GN.

Fig. 14. Comparison of exact algorithms on GN.

exact algorithms, we first run MAXM-E and LONG-E on the queries where LONG-E
can successfully return results. The runtime is shown in Figure 12(b). Then, we run
the three algorithms on the queries that all of them can answer within the time
limit. The runtime, shown in Figure 12(c), indicates that MAXM-E outperforms both
MAXM-EP and LONG-E, and that LONG-E performs better than MAXM-EP except
on the query set containing four keywords. The reason is that MAXM-EP first does the
enumeration in the IR-tree node space and then in the object space, while LONG-E
and MAXM-E do the enumeration in the object space directly. In addition, MAXM-E
does the enumeration only around those objects containing the most infrequent query
keyword, while LONG-E does not consider the term frequency.

We then compare our algorithms with LONG-A and LONG-E on GN, which contains
a large amount of objects and calls for a disk-resident index.

Figures 13(a) and 13(b) compare approximation algorithms MAXM-A2 and MAXM-
AP with LONG-A in terms of efficiency and accuracy, respectively. The approximation
ratio of LONG-A is very close to 1, and it can always obtain nearly optimal groups.
However, since it needs to invoke MAXM-A1 on all candidate objects containing at
least one query keyword and the index is disk resident, it runs much slower than do
MAXM-A2 and MAXM-AP due to the frequent I/O. The ratios of these two algorithms
are only slightly worse.

Figure 14(a) shows the success rate of the exact algorithms MAXM-E, MAXM-EP,
and LONG-E. LONG-E fails on 10 queries when each query contains only two
keywords. It can answer no query containing eight keywords, and can answer only
one query containing 10 keywords within the time limit.
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Fig. 15. Results of MIN+MAX SGK queries on Hotel.

We first run MAXM-E and LONG-E on queries that can be answered by LONG-E.
The runtime is shown in Figure 14(b). We then run the three algorithms on queries
that can be answered by all of them, reporting the runtime in Figure 14(c). Not all of
them can successfully return results on queries containing eight and ten keywords,
and we only show the results on queries containing two to six keywords in the figure. It
can be observed that MAXM-E consistently outperforms LONG-E. LONG-E performs
much worse than does MAXM-EP on queries containing two and four keywords. The
reason may be that the pruning strategy in MAXM-EP is efficient on queries with few
keywords, and thus the enumeration of many groups is avoided. But as the number of
query keywords increases, the enumeration of IR-tree nodes takes longer time, which
reduces the efficiency of MAXM-EP.

In conclusion, LONG-A has better or slightly better accuracy, but much longer
runtime, than MAXM-A2 and MAXM-AP, especially when the index is disk resident.
We note that some queries containing 10 keywords have runtimes that exceed half an
hour on GN when LONG-A is used. We also note that the largest accuracy difference
between LONG-A and MAXM-A2 is 8% (when the number of keywords is eight), which
we believe is low. For the exact algorithms, the success rate of LONG-E is the lowest
on queries containing fewer than six keywords. On the queries for which LONG-E
succeeds, LONG-E runs faster than does MAXM-EP when queries contain more than
four keywords, but it is always much slower than MAXM-E.

9.2.3. The MIN+MAX SGK Query.

I. Results on Hotel. The objective of this set of experiments is to evaluate the efficiency
of the approximation algorithm MINM-A and the exact algorithm MINM-E and to
evaluate the accuracy of MINM-A when we vary the number of query keywords.
Figure 15(a) shows the runtime of the two algorithms, and Figure 15(b) shows the
accuracy of MINM-A on Hotel. Similar to the problem of answering the MAX+MAX
SGK query, although we tried to utilize several pruning strategies in the exact
algorithm, when too many objects contain the query keywords, MINM-E may fail to
give an answer within the timeout threshold. We terminate MINM-E when it fails to
find an answer within the time limit, and we report the success rate in Figure 15(c).

As can be seen, MINM-A outperforms MINM-E in terms of runtime. This is because
MINM-A terminates once a group of nearest objects covering query keywords is found.
MINM-E is much slower. As expected, with an increase in the number of keywords,
the runtime of MINM-E increases due to its exhaustive search on pivot objects. It
can also be observed that the success rate of the exact algorithm on MIN+MAX SGK
queries is much lower than that of the MAX+MAX SGK queries. The reason is that
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Fig. 16. Results of MIN+MAX SGK queries on GN.

Fig. 17. Results of MIN+MAX SGK queries on Web.

the exhaustive search range of using the MIN+MAX cost function is usually larger
than that of using the MAX+MAX cost function.
II. Results on GN. Figure 16(a) shows the runtime of MINM-A and MINM-E, Fig-
ure 16(b) shows the accuracy of MINM-A, and Figure 16(c) shows the success rate of
MINM-E on GN. We observe qualitatively similar results on GN as we do on Hotel.
Since GN contains a large number of objects, the runtime of MINM-E is always much
larger than the runtime of MINM-A.
III. Results on Web. Figure 17(a) shows the runtime of MINM-A and MINM-E,
Figure 17(b) shows the accuracy of MINM-A, and Figure 17(c) shows the success rate
of MINM-E. We observe qualitatively similar results on Web as we do on GN and Hotel.

9.2.4. Effects of Query Keyword Frequency. On the query set generated by randomly
selecting the objects and then selecting a keyword from each object, both MAXM-E
and MINM-E fail to answer some queries within the 5-minute time limit when the
frequency of the query keywords is too high. In this case, there may exist too many
objects containing the query keywords that need to be checked during an exhaustive
search. We found that, on Web, the number of candidate objects may reach around
30 million for some queries, which exceeds 50% of the dataset! Thus we generate
another five query sets containing 10 keywords. In each query set, we still randomly
select the objects, but when we select keywords for the query, we omit keywords
with very high frequency. We rank the keywords according to their frequency, and
for the five query sets, we omit the top 5%, 6%, 7%, 8%, and 9% frequent keywords,
respectively. These experiments aim to evaluate the performance of MAXM-E and
MINM-E on queries without highly frequent keywords. We also report the performance
of the approximation algorithms for MAX+MAX and MIN+MAX SGK queries.
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Fig. 18. Results of MAX+MAX SGK Queries

Fig. 19. Results of MIN+MAX SGK queries.

Figure 18(a) shows the runtime of the three approximation algorithms and MAXM-E
for the MAX+MAX SGK query. MAXM-E is able to find the answers for all queries
within 30 seconds. MAXM-A2 and MAX-AP also run much faster than on the randomly
generated query sets. The accuracy of all the approximation algorithms becomes better
as well.

Figure 19(a) shows the runtime of MINM-A and MINM-E for the MIN+MAX SGK
query. MINM-E is able to find the answers for all queries within two minutes. The
accuracy of MINM-A is also better than that on the randomly generated query set.

The two experiments demonstrate that our exact algorithms are able to perform
quite well when very frequent keywords are not contained in the queries. Checking
dataset Web, we find that most of the frequent keywords are the so-called “stop-
words,” such as “you” and “very,” that do not appear often in queries. Hence our exact
algorithms are applicable in most cases.

9.2.5. Scalability. The scalability of algorithms is extremely important in the Big
Data era [Cui et al. 2014; Hu et al. 2014]. To evaluate scalability, we generate five
datasets containing from 2 to 10 million objects: we generate new locations by copying
the locations in GN to nearby locations while maintaining the real distribution of
the objects; for each new location, a document is selected randomly from the text
descriptions of the objects in GN. Figure 20 shows the runtime of SUM-A and SUM-E
for the SUM SGK query, the runtime of MAXM-A1 and MAXM-A2 for the MAX+MAX
SGK query, and the runtime of MINM-A for the MIN+MAX SGK query (the number
of query keywords is 10). Note that MAXM-A1 and MINM-A are actually the same
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Fig. 20. Scalability of algorithms.

Fig. 21. Runtime.

algorithm. All the algorithms scale well with the size of the dataset. The accuracy
changes only slightly and is not affected by the dataset size.

SUM-EN1 and SUM-EN2 run much slower than SUM-E and are omitted. The
runtimes of MAXM-E and MINM-E increase exponentially with the dataset size, and
are orders of magnitudes slower than the approximation algorithms. Thus, to ensure
readability of the figure, we omit them.

9.3. Experimental Results on Top-k SGK Queries

We study the performance of the modified versions of the algorithms for processing
top-k SGK queries, that is, the exact algorithm K-SUM-E of the top-k SUM query, the
exact algorithm K-MAXM-E of the top-k MAX+MAX query, and the exact algorithm
K-MINM-E of the top-k MIN+MAX query. On randomly generated query sets, MAXM-
E and MINM-E may fail to give an answer within the 5-minute time limit. Since
K-MAXM-E and K-MINM-E are extended from the two algorithms, they also cannot
return answers for queries where MAXM-E and MINM-E fail. Thus we conduct this
set of experiments on the query set generated as described in Section 9.2.4 by avoiding
the top 9% frequent keywords.

The results are shown in Figure 21. We can see that the runtime of K-MAXM-E
and K-MINM-E increases linearly with the value of k, and the runtime of K-SUM-E
increases a bit faster. This is consistent with the complexity analysis in Section 7.1.
The complexity of K-SUM-E is O(k log k) times that of SUM-E.

9.4. Experimental Results on Weighted SGK Queries

We report on experimental results on Web. We observe similar results on Hotel and
GN and thus omit the results for these datasets.

9.4.1. The Weighted SUM SGK Query. As shown in Figure 22(a), the approximation
algorithm runs much faster than the exact algorithm for the weighted SUM query.
Both algorithms take longer time as the number of query keywords increases.
Figure 22(b) suggests that WSUM-A can always achieve good accuracy.
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Fig. 22. Results of weighted SUM SGK queries on Web.

Fig. 23. Results of weighted MAX+MAX SGK queries on Web.

9.4.2. The Weighted MAX+MAX SGK Query. Next, Figure 23(a) shows that the approx-
imation algorithm runs much faster than the exact. Since some queries may take
too long to compute, we set five minutes as the timeout threshold, as done when
evaluating the performance of the exact algorithms for the unweighted query. The
success rate is shown in Figure 23(c) and it can be observed that, as the number of
query keywords increases, the success rate drops. This occurs because more objects
are relevant, which increases the exhaustive search space. Figure 23(b) shows that
the actual ratio of WMAXM-A is much better than the worst-case ratio as derived in
Theorem 8.2, that is, 1 + 2e.

9.4.3. The Weighted MIN+MAX SGK Query. Figure 24(a) shows the runtime of WMINM-
A and WMINM-E. The approximation algorithm runs much faster than the exact
algorithm. The success rate is shown in Figure 24(c). The performance of the exact
algorithm becomes worse as the number of query keywords increases. Figure 24(b)
shows that the actual approximation ratio of WMINM-A is much better than the
worst-case ratio as derived in Theorem 8.4, that is, 3e2.

10. RELATED WORK

Spatial Keyword Queries. Spatial Web objects are gaining in prevalence, and a number
of works on geographical retrieval study the problem of extracting geographic infor-
mation from Web pages (e.g., Amitay et al. [2004], Ding et al. [2000], and McCurley
[2001]), which yields spatial Web objects that can subsequently be queried. This gives
prominence to spatial keyword queries [Cao et al. 2012b].

Commercial services such as Google and Yahoo! offer local search functionality.
Given a spatial keyword query, they return spatial Web objects, such as stores and
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Fig. 24. Results of weighted MIN+MAX SGK queries on Web.

restaurants, near the query location. The results consist of single objects that each
satisfy the query in isolation. In contrast, we aim to find groups of objects such that
the objects in a group collectively satisfy a query.

Chen et al. [2013] evaluate the performance of several geo-textual indexes. Several
proposals use loose combinations of text indexing (e.g., inverted lists) and spatial
indexing (e.g., the R*-tree or the grid index) [Chen et al. 2006; Vaid et al. 2005; Zhou
et al. 2005]. They usually employ the two structures in separate stages. In those works
either the spatial indexing is first employed and then the text indexing is utilized, or
vice versa. Several recently proposed hybrid indexes [Cao et al. 2010; Cong et al. 2009;
De Felipe et al. 2008; Hariharan et al. 2007; Khodaei et al. 2010; Rocha-Junior and
Nørvåg 2012; Wu et al. 2012a, 2012b; Zhang et al. 2009, 2010] tightly integrate the
spatial indexing and the text indexing. In these indexes, each entry p in a tree node
stores a keyword summary field that concisely summarizes the keywords in the subtree
rooted at p. This enables irrelevant entries to be pruned during query processing.

The IR2-tree [De Felipe et al. 2008] and the bR*-tree [Zhang et al. 2009] augment the
R-tree with signatures and bitmaps, respectively. Each leaf entry p stores a signature
as a fixed-length bitmap that summarizes the set of keywords in p. Each non-leaf entry
e stores a signature that is the bit-wise-OR of signatures of the entries in the child node
of e. This approach needs to load the signature files of all words into memory when
a node is visited, which incurs substantial I/O. Khodaei et al. [2010] propose an index
that employs an inverted-file-like structure to store both spatial and text information
for objects such that the spatial and textual parts of data can be simultaneously
handled. However, it assumes each location as a region and thus cannot be used in our
work. Hariharan et al. [2007] propose the KR*-tree (keyword R*-tree). Each node of the
KR*-tree is virtually augmented with the set of keywords that appear in the subtree
rooted at the node. The nodes of the KR*-tree are organized into inverted lists, as are
objects. Wu et al. [2012b] propose WIR-tree which aims at partitioning objects into
multiple groups such that different groups share as few common keywords as possible.

We use a hybrid geo-textual index, the IR-tree [Cong et al. 2009; Li et al. 2011; Wu
et al. 2012a], covered in Section 3, as our index structure.As reported elsewhere [Chen
et al. 2013], the IR-tree has good performance and scales well with the dataset size.
However, we note that our proposed algorithms are not tied to the IR-tree, but can be
used also with the other geo-textual index.

Most existing works on spatial keyword queries retrieve the single object that is close
to the query point and relevant to the query keywords. In contrast, we retrieve groups of
objects that are close to the query point and collectively meet the keyword requirement.

A few studies consider the retrieval of a group of objects. The mCK query [Guo
et al. 2015; Zhang et al. 2009, 2010] takes a set of m keywords as an argument, and
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retrieves groups of spatial keyword objects. It returns m objects of minimum diameter
that match the m keywords. It is assumed that each object in the result corresponds
to a unique query keyword. In contrast, our query takes both a spatial location and a
set of keywords as arguments, and its semantics are quite different from those of the
mCK query. Bøgh et al. [2013] propose an approach to finding top-k point-of-interest
groups given a user requirement in the form of a keyword such as “restaurant”. The
objects in each returned group are close to the user’s current location and to each other.
However, all objects in a group are of the same type, making this functionality different
from the functionality offered by the SGK query. Cao et al. [2014] propose to retrieve
regions of interest for user exploration on road networks. The work aims to retrieve
many relevant objects enclosed by a region that satisfies a given size constraint. For
example, given query keywords “cafe” and “shopping,” it returns a compact region
with many objects, each relevant to either “cafe” or “shopping”, while the SGK query
returns a group that covers all the query keywords with the smallest cost. Long et al.
[2013] also propose algorithms to answer our MAX+MAX SGK query. As shown in
Section 9.2.2, although their approximation algorithm has better accuracy, its runtime
is too high when the number of query keywords increases. Their exact algorithm
performs better than a previous proposal [Cao et al. 2011], but worse than the exact
algorithm proposed in this article. Note that there is no sensible way to answer spatial
group keyword query by splitting the spatial group keyword problem into a spatial and
a textual problem, processing them separately, and intersecting their results to get the
answer.

This publication builds on our previous work [Cao et al. 2011] in which we propose
the spatial group keyword query. In particular, the current article expands that work
by the following additional elements: (a) we improve the previous exact algorithm
enhanced with the IR-tree in Section 4.2; (b) we design a new approximation algorithm
for the MAX+MAX SGK query in Section 5.2, which outperforms the previous approx-
imation algorithm proposed in Cao et al. [2011]; (c) we develop a new exact algorithm
for the MAX+MAX SGK query in Section 5.3 which significantly improves the query
performance compared with the one in Cao et al. [2011]; (d) we propose a new type of
SGK query, that is, the MIN+MAX SGK query, in Section 6 both approximation and
exact algorithms are designed to answer this type of query; (e) we propose a new type
of query, that is, the top-k SGK (kSGK) query, in Section 7, and we extend the proposed
algorithms of answering the SGK queries to process the kSGK queries; (f) we study the
weighted spatial group keyword query in Section 8, extend the SUM, MAX+MAX, and
MIN+MAX SGK queries to the weighted version, and design approximation and exact
algorithms for them; and (g) we present new experimental results for the algorithms
in (a)–(f). In addition, we compare our algorithms for the MAX+MAX query with those
proposed by Long et al. [2013] in Section 9.2.2, and we analyze the effects of the query
keyword frequency on the query processing time in Section 9.2.4.

Route Planning Queries. A route planning query that aims to find a route that
meets a user’s requirements is related to the SGK query. For example, Li et al. [2005]
propose a trip planning query (TPQ) in spatial databases and road networks, in which
each spatial object has a location and a category. The query aims to find the shortest
path between source and target locations that passes through at least one object from
each category specified by the user. Sharifzadeh et al. [2008] study a variant of the
TPQ [Li et al. 2005], called the optimal sequenced route query (OSR). In OSR, a total
order on the query categories is imposed and only the starting location is specified. As
another example, Cao et al. [2012a] propose the keyword-aware optimal route (KOR)
search query which finds the route such that it has the smallest objective score and
the budget score of the route is smaller than a certain threshold, and meanwhile it
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covers all the query keywords. These works aim to find a route instead of a group of
objects and thus are different from our SGK query.

Social Group Queries. Lappas et al. [2009] study the problem of finding a team of
experts in social networks. The objective is to find a group of persons, each with specific
skills, from the social network such that they can collaboratively finish a task and
such that their communication cost is minimized. This work does not consider spatial
aspects. Yang et al. [2012] propose a social-spatial group query that selects a group
of nearby attendees with tight social relations. It is required that the total spatial
distance of the attendees to a rally point is minimized while a certain social constraint
on the attendees must be satisfied. The cost function is similar to the SUM SGK query.
However, they do not consider the textual parts, but instead the social constraint.

11. CONCLUSIONS AND FUTURE WORK

We present the problem of retrieving a group of spatial objects, each associated with
a set of keywords, such that the group covers the query’s keywords and has the lowest
cost measured by their distance to the query point as well as the distances between the
objects in the group. We study three particular instances of the problem, all NP-hard.
We develop approximation algorithms with provable approximation bounds and exact
algorithms to solve the problems. We also study the top-k spatial group keyword
query and the weighted version of the query. Results of experimental evaluations
offer insight into the efficiency and accuracy of the approximation algorithms, and the
efficiency of the exact algorithms.

This work opens a number of promising directions for future work. First, it is of
interest to develop algorithms for the SUM+MAX SGK query. Second, it is of interest
to consider the problem of a partial coverage of query keywords. That is, if the cost of
covering all query keywords is too high, we can consider to partially cover the query
keywords to reduce the cost.
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